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CHAPTER 18
Interest Rate Products: Swaps

he first interest rate swap market originated in the early 1980s. An interest
rate swap is an agreement between two parties to exchange or “swap” a

series of periodic interest payments. The most common interest rate swap, a
plain-vanilla interest rate swap, is an agreement to exchange payments on fixed
rate debt for floating rate debt. An early example occurred in 1982 when Sallie
Mae swapped the interest payments on intermediate-term fixed rate debt for
floating rate payments indexed to the three-month T-bill yield. In the same year,
a USD 300 million seven-year Deutsche Bank bond issue was swapped into USD
LIBOR. While we discussed swaps on other types of assets in earlier chapters,
interest rate swaps are far and away the largest asset category. As of yearend
2003, interest rate derivatives accounted for 72% of the notional amount of all
OTC derivatives outstanding. Of this amount, more than 78% of interest rate
derivatives were swaps, with the remaining 22% being split between options
(14%) and forwards (8%) as is shown in Figure 18.1.

FIGURE 18.1 Percentage of total notional amount of single-currency interest-rate derivatives 
outstanding worldwide on December 2003 by contract type. Total notional amount of inter-
est-rate derivatives is USD 141.99 trillion.  

Source: The table was constructed from information contained in Bank for International Set-
tlements (www.bis.org), BIS Quarterly Review, June 2004.
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In general, this chapter deals with OTC interest rate products that have
multiple cash flows through time. While plain-vanilla swaps is certainly the larg-
est category within this group, there are also a variety of other instruments
including caps, collars, floors, and swaptions. We will address each in turn.
Before doing so, however, it is important to develop a thorough understanding
of the zero-coupon yield curve and how it is estimated. This is the focus of the
first section of this chapter. The second section describes the nature of interest
rates swaps and how they are valued. The third and fourth sections focus on
caps, collars, and floors, and swaptions, respectively. 

ESTIMATING THE ZERO-COUPON YIELD CURVE

In Chapter 2, we defined the term structure of interest rates (or the zero-coupon
yield curve) as the relation between yield and term to maturity for zero-coupon
bonds with a common degree of default risk. At the time, we used U.S. Treasury
bills and strip bonds to illustrate the shape of the term structure. In the illustra-
tions of the chapters that followed, we assumed that we knew the structure of
the zero-coupon yield curve and usually expressed it as some form of mathemat-
ical function such as, for example, ri = 0.03 + 0.01ln(1 + Ti). The assumption
was motivated by the need to have a risk-free, zero-coupon interest rate for all
future dates on which there was a cash flow.1 In this section, we face the prob-
lem of determining the zero-coupon yield curve head on. 

Estimating the zero-coupon yield curve has two steps. First, we must collect
prices of instruments with varying times to maturity but the same degree of default
risk. These are usually either U.S. Treasury rates or Eurodollar rates. Within each of
these categories, we must choose among available instruments. For U.S. Treasuries,
for example, the zero-coupon rates can be estimated using any combination of T-
bills, strips, coupon-bearing notes and bonds, and constant maturity Treasury
(CMT) rates. For Eurodollars, time-deposit rates, futures prices, and swap rates can
all be used. The choice depends on the application at hand and the liquidity of the
markets whose rates/prices are being used. From the prices of these instruments, we
determine zero-coupon yields for terms to maturity, as is illustrated in Figure 18.2. 

The second step involves “smoothing the yield curve.” More specifically, we
must decide how to estimate zero-coupon rates for cash flows that occur at
times other than those represented in Figure 18.2. Consider a cash flow that
occurs four years from now. We have only a zero-rate for year three and one for
year five. Based on these rates, or any other rates in the figure, what is the best
guess of the four-year rate? We discuss two possible methods.

Identify Zero-Coupon Rates

As was noted earlier, zero-coupon yield curves are most commonly constructed
using either U.S. Treasury rates or Eurodollar rates. Below we focus first on esti-
mating the yield curve for Treasuries and then for Eurodollars. 

1 Put differently, we need to know today’s prices of one dollar received at all future cash flow
dates. These, of course, are the discount factors implied by the zero-coupon yield curve.
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FIGURE 18.2 Zero-coupon rates determined from available interest rate securities and deriva-
tive contracts.

Treasury Instruments U.S. Treasury instruments come in a variety of forms. First,
at the short-end, there are T-bills. T-bills are discount instruments and therefore
have no intermediate interest payments. Each week the U.S. Treasury issues 28-
day, 91-day, and 182- T-bills. As noted in Chapter 2, T-bill rates are quoted as a
discount from par and use a 360-day banker’s year. To compute the continuously-
compounded yield to maturity of these discount instruments, we use the formula,

(18.1)

where Bi is the price of the T-bill, which is determined by taking the bill’s quoted
discount, Di, and adjusting it by the number of days to maturity, ni, in the fol-
lowing way,

Bi = 100 – Di(ni/360) (18.2)

and Ti is the actual number of years to maturity (i.e., Ti = ni /365). Thus, based
on quoted T-bill discount rates, we can identify the dots in Figure 18.2 up until
182 days to maturity.

To go beyond six months, however, we have a variety of alternatives. Strip
bonds would be ideal since they have no intermediate coupon payments and
their prices can be transformed to zero-coupon interest rates quite easily using
(18.1), where Bi represents the strip bond price quote. Unfortunately, the mar-
ket for strip bonds is not particularly active, so the quote prices are sometimes
unreliable. The same is true for most coupon-bearing notes and bonds. Most
Treasuries trade actively for a short period of time just after they are issued
(called on-the-run issues), and then infrequently thereafter (off-the-run issues).

In practice, the zero-coupon yield curve for Treasuries is usually constructed
from “Constant Maturity Treasury” rates, or CMTs. CMT yields are computed
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each day by the U.S. Treasury and are intended to represent the yields to matu-
rity of par bonds2 with 1, 3 and 6 months and 1, 2, 3, 5, 7, 10, and 20 years to
maturity. To estimate these rates, the Treasury gathers the closing market bid
yields on on-the-run Treasury securities. These market yields are calculated from
composites of over-the-counter market quotations obtained by the Federal
Reserve Bank of New York each day. Based on these market yields, the Treasury
then smoothes the relation between yield and term to maturity,3 thereby allowing
it to estimate rates at the standard maturities listed above. Thus a yield for a 10-
year maturity can be computed even if no outstanding security has exactly 10
years remaining to maturity. To generate the zero-coupon yields for all maturi-
ties, we “reverse engineer” the CMTs using a technique called “bootstrapping.”

In estimating the zero-rates from CMT rates, we must first separate CMTs
into two groups—those with maturities of less than a year and those with maturi-
ties one year or greater. The reason is that short-term CMTs have no coupon inter-
est payments while the long-term ones do. The following table shows the rates
observed as of the close of trading on March 17, 2005. They were obtained from
the U.S. Treasury’s website at http://www.ustreas.gov/offices/domestic-finance/
debt-management/interest-rate/yield.html. These rates will serve as the basis for
illustrating the bootstrapping technique as we proceed with its description.

To begin, we find the zero-coupon rates corresponding to the 1, 3, and 6
month CMT rates. As was noted above, these are not coupon bonds. There is
one payment at the end of the bond’s life that includes coupon interest as well as
the repayment of principal. The continuously compounded zero-coupon yield to
maturity for each of these three CMTs can be computed using 

(18.3)

2 A par bond is one whose price equals its face value. For such a bond, the coupon interest rate
equals its yield to maturity compounded on a semiannual basis.
3 The Treasury uses a cubic spline model to smooth the yield curve.

CMT Rates

Type Term Yield

Months   1 2.68

  3 2.79

  6 3.08

Years   1 3.29

  2 3.70

  3 3.89

  5 4.14

  7 4.30

10 4.47

20 4.87

ri
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where yi is the annualized nominal yield to maturity of CMTi, and mi is its num-
ber of months to maturity. For the one-month maturity, for example, the zero-
coupon rate is

The rates for three months and six months, together with the one-month rate,
are summarized as follows: 

Now we turn to the coupon-bearing CMT rates. Matters get slightly more
complicated. For maturities of one year and greater, the CMT rates are yields on
par bonds with semiannual coupon payments. A par bond is one whose price
equals its face value. For such a bond, the coupon interest rate equals its yield to
maturity compounded on a semiannual basis. This means that each CMT bond
may be written as

(18.4)

where ri is the zero-coupon rate of a bond maturing at time Ti, COUP is the
annualized coupon rate (i.e., the CMT rate) of the bond under consideration,
and n is its number of semiannual coupons. What the bootstrapping technique
does is start with the zero-coupon rate at the shortest maturity, and then solve
for each new maturity recursively one at a time. Consider the one-year CMT
rate. A one-year semiannual coupon CMT reported in the panel above has a
yield of 3.29%. Substituting into (18.4), we get

In this expression, the first term on the right-hand side is the present value of the
first semiannual coupon which we can compute because we have already deter-
mined that the six-month continuously compounded zero-rate is 3.057%. Since
we have one equation and one unknown, we can solve for the one-year zero-
coupon rate by rearranging the expression to isolate r2. Its value is 3.265%. 

The next available CMT rate has two years to maturity. Substituting into
(18.4) we get

CMT Rates

Zero-RateType Term Yield

Months 1 2.68 2.677%

2 2.79 2.780%

3 3.08 3.057%
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Now we are in a pickle. We have one equation and need to solve for the 1.5-year
and two-year zero-coupon rates. To manage this particular conundrum, we
assume that the 1.5 year rate equals the average of the one-year rate and the
two-year rate, that is,

By imposing this restriction, we can compute r4 and, hence, r3. The two-year
zero-rate is 3.676%, and the 1.5-year zero-rate is 3.470%.

From a practical perspective, it is best to go ahead and compute the CMT
rates at half year interval from the outset. With the one-year CMT rate at 3.29%
and the two-year CMT rate at 3.70%, the 1.5-year CMT rate, computed using
linear interpolation, is 3.495%. With the three-year CMT rate at 3.89% and the
five-year CMT rate at 4.14%, the 3.5-year CMT rate, computed using linear
interpolation, is 3.9525%, and so on. Now, the zero-coupon rates at half-year
intervals from one year to 20 years can be determined recursively (i.e., “boot-
strapped”) one at a time using a re-arranged version of equation (18.4), that is, 

(18.5)

The last rate we are able to compute has the same term to maturity as the long-
est CMT rate. 

The bootstrap procedure for deducing zero-coupon rates from CMT rates is
programmed as a function in the OPTVAL Function library. Its syntax is 

OV_IR_TS_ZERO_FROM_CMT(months, cmtm, years, cmty, rt)

where months is the vector of months to maturity of the CMT rates less than a year,
cmtm is the vector of rates of the CMT rates less than a year, years is the vector of
years to maturity of the CMT rates one year or greater, cmty is the vector of rates
of the CMT rates one year or greater, and rt is an indicator variable set to r or R if
the function is to return an array of zero-coupon rates or t or T if the function is to
return an array of the years to maturity of the zeros.4 To use the function, we high-
light cells F3:F14, call the function OV_IR_TS_ZERO_FROM_CMT and insert the
necessary inputs, and then press Shift, Ctrl, and Enter simultaneously. The high-

4 The function returns rates/terms corresponding to the maturities of the monthly input rates
and then at half year intervals thereafter.
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lighted region will then fill with the zero-coupon rates. Note that the 1.5-year and
two-year rates correspond to our computations above.

Eurodollars For Eurodollars, zero-coupon rates are usually estimated using
either (1) Eurodollar time-deposit rates for maturities less than one year and
Eurodollar swap rates for one year and beyond; or (2) Eurodollar time-deposit
rates for maturities to three months and Eurodollar futures prices beyond three
months. If a combination of time-deposit and swap rates is used (approach (1)),
the bootstrapping technique described for the CMT rates can be applied once
again. Time-deposit rates are nominal interest rates on short-term deposits
where interest is paid only at maturity, and swaps rates are essentially the cou-
pon rates of semiannual coupon par bonds. On March 17, 2005, Eurodollar
time deposit and swap rates were as follows:

Eurodollar Time Deposits Eurodollar Swap Rates

Months Rate Years Rate

1 2.8281   1 3.6900

3 3.0156   2 4.0800

6 3.2656   3 4.2950

  4 4.4400

  5 4.5550

  6 4.6400

  7 4.7150

  8 4.7850

  9 4.8500

10 4.9050

12 5.0000

15 5.1050

20 5.2000

25 5.2350

30 5.2500
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The bootstrap procedure for deducing zero-coupon rates from Eurodollar time
deposit/swap rates is programmed as a function in the OPTVAL Function
library. Its syntax is 

OV_IR_TS_ZERO_FROM_SWAP(months, spot, years, swap, rt)

where months is the vector of months to maturity of the time-deposit rates with
maturities less than a year, spot is the vector of time-deposit rates, years is the
vector of years to maturity of the swap rates of one year or greater, swap is the
vector of swap rates, and and rt is an indicator variable set to r or R if the func-
tion is to return an array of zero-coupon rates or t or T if the function is to
return an array of the years to maturity of the zeros.5 To use the function, we
highlight cells H3:H14, call the function OV_IR_TS_ZERO_FROM_SWAP and
insert the necessary inputs, and then press Shif, Ctrl, and Enter simultaneously.
The highlighted region will then fill with the zero-coupon rates. 

Note that we have computed continuously-compounded, zero-coupon rates
for Treasuries and Eurodollars with comparable maturities and that the Euro-
dollar rates are uniformly higher. This reason is simple—credit risk. While both
are rates of return on U.S. dollar deposits, Treasury rates are backed by the
resources of the U.S. government. Eurodollar rates, on the other hand, are
banked by the resources of the British bank where the deposit is held. Note also
that the credit risk premium grows larger with term to maturity. This reflects the
fact that the probability of default increases with time. While there may be little
chance that the bank will default during the next year, there may be a signifi-
cantly larger risk that it will default over the next 30 years.

5 This function also returns rates/terms corresponding to the maturities of the monthly input
rates and then at half year intervals thereafter.
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In the Eurodollar market, zero-coupon yields are also often computed using
a combination of Eurodollar time-deposit rates and Eurodollar futures prices.
The procedure is not unlike the bootstrapping procedure using with CMT and
swap rates in the sense that we start with the shortest term to maturity and then
add longer maturities, one at a time.6 First, we identify the rate of interest on a
Eurodollar time deposit that matures when the nearby quarterly Eurodollar
futures contract settles. Standing on March 17, 2005, the nearby quarterly June
futures expires June 15, 2005—in 90 days. The three-month Eurodollar time
deposit rate was given earlier in this section and is 3.1056%. The continuously
compounded, zero-coupon rate for this maturity is therefore 

Next, we use the settlement price of the June 2005 Eurodollar futures contract,
96.1510 to compute the forward rate on a Eurodollar time deposit that begins
on June 15, 2005 and ends when the September 2005 settles on September 21,
2005. The forward rate expressed as a nominal rate is 100 – 96.5150 =
3.4850%. Expressed as a continuously compounded rate, the implied forward
rate on a 98-day time deposit beginning in 90 days is

Zero-Coupon Rates

Years Treasuries Eurodollars Risk Premium

    0.0833 2.677% 2.825% 0.148%

0.25 2.780% 3.004% 0.224%

0.50 3.057% 3.239% 0.183%

1.00 3.265% 3.660% 0.395%

1.50 3.470% 3.854% 0.385%

2.00 3.676% 4.050% 0.374%

2.50 3.771% 4.158% 0.387%

3.00 3.867% 4.267% 0.400%

3.50 3.930% 4.341% 0.410%

4.00 3.994% 4.415% 0.421%

4.50 4.059% 4.474% 0.415%

5.00 4.124% 4.534% 0.410%

6 The procedure described here is intended to be illustrative only. We ignore considerations
such as two-day settlement, three-month time intervals with varying numbers of days, and
convexity.
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The 188-day continuously compounded, zero-coupon rate is therefore determined by

and is 3.2914%. The panel below summarizes the computations out to five
years to maturity. The syntax of the OPTVAL function is 

OV_IR_TS_ZERO_FROM_EDFUT(ndt, srate, nexp, fp, rt)

where ndt is today’s date, srate is the rate of interest on the time deposit matur-
ing when the nearby futures contract settles, nexp is the vector of settlement
dates for the Eurodollar futures, fp is the corresponding vector of futures prices,
and rt is an indicator variable instructing the function to return the term of
maturity, T, or the zero-coupon rate, R.  

Smoothing the Yield Curve

Thus far we have performed the first step in identifying the zero-coupon yield
curve, that is, we have identified a series of zero-coupon spot rates at specific

r188
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maturities (i.e., we have identified the location of the dots in Figure 18.2). The
next step in building the zero-coupon yield curve involves deciding how to a
zero-coupon rate at a maturity that falls between the dots in Figure 18.2. Sup-
pose, for example, a cash flow that occurs four years from now. We have only a
zero-rate for year three and one for year five. What is the best guess of the four-
year rate? We discuss two possible methods.

Perhaps, the most popular method for handling this problem is called linear
interpolation.7 In essence, it involves drawing a straight line between the two
rates on the term structure that straddle the desired maturity, and then reading
the rate from the line. Algebraically, this amounts to the time-weighted average, 

(18.6)

where i and j are the rates on either side of the desired maturity k, Tm is the time
to maturity of the mth rate (measured in days or years), and Ti ≤ Tk ≤ Tj. Sup-
pose we would like to determine the six-month zero-coupon rate based on the
zero-coupon rates we computed from futures prices. Applying the formula
(18.6), we get

In the event Tk is less (greater than) Ti(Tj), rk is set equal to ri(rj). Linear inter-
polation can be performed using the function,

OV_IR_TS_INTERPOLATE(sterm,term,rate)

where sterm is the term to maturity of the desired rate, term is a vector of the
terms to maturity of the available rates, and rate is the vector of available rates.

Another smoothing technique involves fitting a regression line through the
available zero-coupon points. Suppose, for example, we fit the regression

through the zero-coupon rates deduced from Eurodollar futures prices. The fit-
ted regression line is 

As the figure below show, the regression does reasonably well at smoothing the
points, with a tendency to overestimate very short-term rates and underestimate

7 Other smoothing methods include multivariate regression and cubic splines. For a detailed
description of different curve-fitting methods, see Tuckman (2002, Ch. 4).
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intermediate term rates. The regression estimate for the six-month, zero-coupon
rate is 3.438%.

Using a more elaborate regression model structure would improve matters.
Two simple alternatives are to express the zero-coupon rate as a quadratic or
cubic function of time to maturity. Regardless, however, the regression approach
is somewhat troublesome in the sense that it will generally produces predicted
zero-coupon rates that are different from the rates that are used as inputs in the
regression. Put differently, the line does not go through the points in the figure
below. Under linear interpolation, this would never happen. 

INTEREST RATE SWAPS

The specifications of OTC interest rate swap contracts are much less transparent
than for interest rate futures and options traded on exchanges. The reason is
simple. The contracts are privately negotiated between counterparties, with nei-
ther having any obligation to report the terms publicly. Thanks to trade organzi-
ations such as the International Swaps and Derivatives Association (or ISDA),
certain standard practices have emerged. Documents such as 2000 ISDA Defini-
tions and Annex to the 2000 ISDA Definitions8 lay out the industry’s “lan-
guage” for communicating the terms of derivatives transactions. Other
documents such as the ISDA Master Agreement (Local Currency – Single Juris-
diction) and the ISDA Master Agreement (Multicurrency – Cross Border) pro-
vide the text for actual contracts. 

In this chapter, we focus primarily on plain-vanilla interest rate swaps. In
these swaps, one leg requires the payment of interest based on a fixed rate, and
the other leg requires payment of interest based on a floating rate. These swaps
have become so active that their rates are quoted widely, and the spread between
bid and ask rates is as little as four basis points. Table 18.1 contains midmarket
fixed-for-floating swap rates as of the close of trading on Friday January 28,
2005. These rates are for “generic” interest rate swaps. Specifically, for these
swaps, (1) no money changes hand at inception; (2) no exchange of principal

8 See International Swap and Derivatives Association’s (ISDA’s) website at www.isda.org.
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occurs; (3) interest payments are made semiannually and are netted (i.e., the
party owing the largest payment pays the difference between the amount he owes
and the amount he is supposed to receive); and (4) the floating rate is based on
the six-month LIBOR rate.9 With the contractual terms in mind, we can now
interpret Table 18.1. The table contains the fixed rate on a fixed-for-floating
swap. Thus, for a two-year fixed-for-floating swap, the fixed rate payer pays
3.589/2 or 1.7945% and receives six-month LIBOR rate each six months.

Fixed-for-floating interest rate swaps are just that—one party agrees to pay
a fixed rate of interest and receive a floating rate, and the other party receives a
fixed rate of interest and pays a floating rate. Interest rate swaps are usually
consummated by a confirmation sheet faxed between the counterparties in the
OTC market. Table 18.2 shows selected terms from a confirmation sheet of a
plain-vanilla interest rate swap. The sheet is divided into three panels of infor-
mation. The first panel provides the calculation amount, trade date, and termi-
nation date. The calculation amount is the notional amount upon which interest
payments are computed. The trade date is the day on which the parties enter

9 In some swaps, the interest rate on the floating rate leg gets reset more frequently than the
payments (e.g., the floating-rate gets reset each month based on one-month LIBOR while in-
terest payments are made semiannually). In these instances, the one-month reset rates ob-
served during the payment interval are averaged to determine the floating rate payment. In
general, the swap agreement will specify the method of averaging as “unweighted” or
“weighted.” Unweighted means a simple arithmetic average of all rates during the payment
interval, and weighted means a time-weighted arithmetic average (i.e., each set rate is weighted
by the proportion of the total number of days that the rate prevailed during the payment pe-
riod). If the term sheet does not specify the method of averaging, unweighted averaging is as-
sumed. See International Swaps and Derivatives Association (2000b, p.9).

TABLE 18.1  Fixed-for-floating swap rates reported by Bloomberg on Friday, January 28, 
2005. By convention, the rates represent the fixed rate on a swap with semiannual interest 
payments and a floating rate based on six-month LIBOR. A swap to receive fixed and pay 
floating will be based on the bid rate, and a swap to pay fixed and receive floating will be based 
on the ask rate.

Term in Years Bid Ask

  2 3.557 3.589

  3 3.753 3.784

  4 3.906 3.938

  5 4.052 4.060

  6 4.152 4.186

  7 4.250 4.285

  8 4.341 4.376

  9 4.422 4.458

10 4.493 4.529

15 4.761 4.796

20 4.888 4.926

30 4.961 4.999
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into the agreement, the effective date is the first day of the term of the agree-
ment, and the termination date is the last day of the agreement.

The second and third panels of information specify obligations of the fixed-
rate and floating rate payers, respectively. The fixed rate payer, in this case, is
Bank A, which promises to make semiannual, fixed-interest payments at a rate
of 4.238%. The “30/360” fixed rate, day-count fraction implies that each
month (year) is assumed to have 30 (360) days. Thus Bank A is obliged to pay
Company B an amount equal to

every six months for five years, with the first payment commencing on Decem-
ber 1, 2004. 

TABLE 18.2  Selected terms from the confirmation of an OTC interest rate swap

The terms of the particular swap transaction to which this confirmation relates are as fol-
lows:

Calculation amount USD  30,000,000.00

Trade date May 28, 2004

Effective date June 1, 2004

Termination date June 1, 2009

The fixed rate payer pays on each payment date an amount determined in accordance
with the following:

Fixed rate payer Bank A

Payment dates Commencing on December 1, 2004 and semiannually
thereafter on the first calendar day of each calendar
day of June and December up to and including the
termination date.

Fixed rate 4.238%

Fixed rate, day-count fraction 30/360

The floating rate payer pays on each payment date an amount determined in accordance
with the following:

Floating rate payer Company B

Payment dates Commencing on December 1, 2004 and semiannually
thereafter on the first calendar day of each calendar
day of June and December up to and including the
termination date.

Floating rate option USD-LIBOR-LIBO

Designated maturity 6 months

Reset dates The first day of the relevant calculation period

Rounding factor One hundred-thousandth of 1%

Floating rate, day-count fraction Actual/360

$30,000,000 0.04238
180

360
----------×× $635,700=
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At the same time, the floating rate payer, Company B, is obliged to make
semiannual interest payments on the same dates. The floating rate option is
specified to be “USD-LIBOR-LIBO” and the designated maturity is six months.
The term, USD-LIBOR-LIBO, is defined in the Annex to the 2000 ISDA Defi-
nitions10 and means the offered rate on U.S. dollar deposits for the period of the
designated maturity as they appear on the Reuters Screen LIBO Page. Since the
reset date is the first day of the calculation period, the first floating rate payment
becomes known as of the effective date of the swap. If the rate is 1.5625% on
June 1, 2004, the floating rate interest payment on December 1, 2004 will be
computed as follows. First, you compute the actual number of days between
June 1, 2004 and December 1, 2004. The actual number of days is 183. Next we
compute the semiannual interest rate by taking the annual interest rate, 1.5625,
multiplying it by the floating rate, day-count fraction, 183/360, and rounding it
to 0.79427% (by virtue of the stated rounding factor). The floating rate pay-
ment that Company B is obliged to make on December 1, 2004 is $238,281.
The fixed rate and floating rate payments are then netted so that only one party
pays on a particular payment date. In our illustration, this means Bank A, the
fixed rate payer, will pay Company B, the floating rate payer, $397,419 on
December 1, 2004. Who pays and the amount of subsequent payments will
depend on the level of the floating rates on the remaining reset dates.

In general, the terms of interest rate swaps are not available in financial
publications such as the Wall Street Journal. Indeed, since OTC derivatives are
privately negotiated and have wide-ranging terms, there are no means to system-
atically collect and report such information. One way to obtain indicative prices
or rates of certain “generic” OTC derivatives deals is to subscribe to a service
such as Bloomberg, Reuters, and Telerate that provides such quotes on a real-
time basis. Essentially, what these services provide is access to a number of
pages (computer screens), each page containing the current market quotes of
generic types of trades. The fixed-for-floating swap rates shown in Table 18.1
are bid/ask quotes rates11 from a real-time financial data service called
Bloomberg. While interest rate swaps can have a wide variety of terms, the
terms of these swaps are “standardized.” The periodic payments of all these
swaps are made semiannually, with the first payment occurring in six months.
All of the rates are set in such a manner that the swaps have a zero upfront pay-
ment. The floating rate interest payment is indexed to the six-month LIBOR rate
with an “actual/360” day-count fraction convention, and the fixed rate interest
payment is based on the quotes appearing in the table and is calculated using a
“30/360” day-count fraction convention. So, given these standard practices, the
terms of the entire swap are summarized by the term and by the fixed rate. For
real-time data services such as Bloomberg, bid and ask rates are displayed.
These represent the highest bid rate and the lowest ask rate of all OTC dealers
supplying Bloomberg with intraday quotes. If you buy the swap, you will pay
the ask rate and receive LIBOR. If you sell the swap, you will receive the bid
rate and pay LIBOR. The difference between the bid and ask rates is the dealer’s

10 See International Swaps and Derivatives Association (2000b, p.41).
11 A midmarket rate is the average of the best bid rate and best ask rate prevailing in the mar-
ketplace at a given point in time.
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spread. Competition among interest rate swap dealers has driven spreads in the
plain-vanilla interest rate market to incredibly small levels—less than 4 basis
points on average.

The reasons for entering a fixed-for-floating interest rate swap vary. Because
the term structure of interest rates is usually upward sloping, the interest rate on
long-term debt is usually higher than short-term debt. Assuming a firm has long-
term financing needs, it may want to issue long-term, fixed rate debt so that
there is no uncertainty regarding the level of future interest rate payments. On
the other hand, a firm may decide to issue floating rate debt because it believes
that the average level of interest payments over time will be less than those of a
fixed rate loan. A problem with the floating rate alternative, however, is that,
while there is good reason to believe that short-term rates will provide lower
interest payments on average, it is not guaranteed. An unexpected spike in the
short-term rate can have dramatic consequences, particularly when the firm
finances much its capital expenditures using internally generated funds. Interest
rate swaps are an inexpensive and convenient means of moving back and forth
between the two alternative forms of financing. If a firm has fixed rate debt and
is willing to incur the risk of floating rate debt in hopes of reducing interest pay-
ments, it can enter a fixed-for-floating swap in which it receives fixed rate pay-
ment (to offset in whole or in part its payment obligation to its bondholders)
and pays floating. If a firm has floating-rate debt and wants to gain the certainty
of fixed rate payments, it can enter a fixed-for-floating swap in which it receives
floating (to offset in whole or in part its payment obligation to its bondholders)
and pays fixed.

The terms of generic interest rate swaps are set such that (1) no money
changes hand at inception; (2) no exchange of principal occurs; (3) interest pay-
ments are made semiannually and are netted (i.e., the party owing the largest
payment pays the difference between the amount he owes and the amount he is
supposed to receive); and (4) the floating rate interest payments are based on the
six-month LIBOR rate.

The cash flows of a two-year fixed-for-floating swap are summarized in
Table 18.3. In the table, the party is assumed to pay fixed and receive floating.
The fixed rate is 8%, and is paid semiannually. Note that this implies that 4% of
par is paid each period (six months). The floating leg is also paid each six
months. The rate is based on the six-month LIBOR rate and is set at the begin-

TABLE 18.3  Hypothetical cash flows of an interest rate swap in which the holder pays fixed 
and receives floating.  

Time 0 1 2 3 4

Fixed rate leg Interest –4.00 –4.00 –4.00     –4.00

Principal –100.00

Floating rate leg Interest   3.50   4.00   4.50       5.00

Principal   100.00

Net cash flows Interest –0.50   0.00   0.50       1.00

Principal       0.00
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ning of each payment period. In the table, the six-month LIBOR rate is 7% at
inception, implying that the interest receipt at the end of the first period is
already known. The remaining interest receipts are not known at inception. The
4.00, 4.50, and 5.00 receipts are entered only to show the netting process, that
is, the payments are netted each period, with the party owing the net amount
paying the counterparty. Thus in period 1, the fixed rate payer pays –0.50. In
period 2, no payment is made, and in periods 3 and 4, the fixed rate payer
receives 0.50 and 1.00, respectively. The notional amount of the swap also
appears on the terminal date. The net of the notional amounts is zero, implying
that the notional amount has no bearing on the valuation of the swap. 

ILLUSTRATION 18.1 Transfer risk of floating rate payments.

Suppose that, on July 1, 2004, ABC Company issued $100 million in six-year floating-
rate debt at a rate of 100 basis points over six-month LIBOR. Suppose also that over the
next year short-term interest rates rise precipitously and ABC becomes concerned that
any further increase in short-term rates will take the firm’s cash flows to a level that they
will not be able to sustain their desired growth rate in investment. What alternatives are
available to ABC?

Alternative 1: Take the “Ostrich” strategy. Under this alternative, ABC does nothing. In
leaving its short-term interest rate exposure unhedged, the firm is making a bet that
short-term rates will stay the same or fall. If they rise, the firm is in trouble.

Alternative 2: Issue fixed rate debt. ABC may have the alternative to retire its floating-rate
debt with a fixed rate bond issue. Such an action would lock in interest rate payments and
alleviate the firm’s short-term interest rate exposure. The main problem with this alterna-
tive is that the costs of issuing fixed rate debt may be as high as 250 basis points or more.
This means that for every dollar raised, the underwriting firm takes 2.5%. 

Alternative 3: Enter a fixed-for-floating swap. Under this scenario, ABC enters a five-year
fixed-for-floating swap in which it pays fixed and receives floating (i.e., six-month
LIBOR). It checks the current quotes in the OTC market and finds that five-year plain
vanilla interest rate swaps are quoted at 4.22-4.26%. Since ABC will pay fixed, the ask
rate, 4.26%, is the relevant rate. Assuming it can execute the swap at the prevailing rate,
ABC’s interest cash flows will appear as follows:

Note that ABC’s floating rate interest payment has not disappeared. Its risk, however, has
disappeared since ABC receives LIBOR as part of the swap. ABC’s net cash flow each six-
month payment period is fixed at 2.63%.

Payment

Current interest payment –(LIBOR/2 + 0.50)%

Receive LIBOR (LIBOR/2)%

Pay fixed –(4.26/2)% = –2.13%

Net cash flow 2.63%
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Interest Rate Swap Valuation

As the above description indicates, an interest rate swap is like being long (short)
a fixed rate bond and short (long) a floating rate bond. Applying the valuation-
by-replication technique, the value of an interest rate swap is the difference
between the values of a fixed rate bond and a floating rate bond.

A fixed rate bond is a coupon-bearing bond. It pays a stated rate of interest
periodically throughout the bond’s life, ending with an interest payment and repay-
ment of the bond’s par value or notional amount. To value a fixed rate bond, we
take the present value of the promised fixed rate interest payments, that is, 

(18.7)

where FIXEDi is the amount of the of the fixed rate payment (i.e., the fixed rate
times the notional amount, NOTIONAL), ri is the annualized zero-coupon dis-
count rate used to bring the cash flow to the present, Ti is the number of years
until the cash flow i occurs, and n is the number of interest payments.

Like a fixed rate bond, a floating rate bond pays interest periodically
throughout the bond’s life and then repays the principal at the bond’s maturity.
The difference is that, with a floating rate bond, the periodic interest rate
“floats” from period to period. The interest rate is linked to a short-term refer-
ence rate such as LIBOR, T-bills, prime, and the Fed Funds rate and is set at the
beginning of each payment period (i.e., on the reset date). The tenor of the refer-
ence rate is typically less than a year. Generic interest rate swaps, for example,
are linked to six-month LIBOR. 

Conceptually, valuing a floating rate bond may seem more difficult than val-
uing a fixed rate bond since the amounts of floating rate payments, except for
the first, are unknown. To determine the value of a floating rate bond, we must
first forecast the expected interest payments, E(FLOATi), and then discount the
expected interest payments to the present, that is,

(18.8)

The first payment, FLOAT1, is treated separately to reflect the fact that the amount
of the first interest payment is already set. The remaining interest payments are
estimated using the forward rates implied by the zero-coupon yield curve. 

Fortunately, (18.8) is not the only way to value a floating rate bond. A much
simpler approach is possible. To understand this approach, note first that, on a
reset date, the six-month LIBOR rate determines the amount of the interest pay-
ment in six months. Hence, the value of the floating rate bond in six months is
100(1 + LIBOR). Note also that the six-month LIBOR rate is the discount rate
we would use to bring a future value occurring six months back to the present.
Thus standing on each reset date, the value of a floating rate bond is
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The only time the floating rate leg deviates in value from 100 is in the current
period when interest rate payment has been set and the zero-coupon yield curve
changes. On the next reset date, the value of the floating-rate bond again reverts
to 100. Between reset dates, the value of the floating-rate bond is 

(18.9)

With valuation formulas for the fixed rate (18.7) and floating rate (18.9)
legs of the interest rate swap, we can now value the swap itself. The value of an
interest rate swap from the perspective of someone receiving fixed and paying
floating is the difference,

Vswap = PVfixed – PVfloating (18.10)

ILLUSTRATION 18.2 Find value of floating rate bond given zero-coupon yield curve.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the value of a five-year floating rate bond with semiannual interest rate payments.

Like any other security, the valuation of the floating rate bond of an interest rate
swap is a matter of identifying the amount and the timing of expected future cash flows
and then discounting them to the present. To identify expected future cash flows, we use
the current zero-coupon yield curve to identify forward rates, and then use forward rates
to determine expected interest payments.

Step 1: Find the discount rate (factor) for each cash flow by substituting into the term
structure equation. The spot rates and discount factors are shown in the following table.
Recall the discount factor is today’s price of $1 received at time Ti, that is, .

Years to Maturity Spot Rate Discount Factor Implied Forward Rate

0.00 4.000% 1.00000

0.50 4.405% 0.97821 4.405%

1.00 4.693% 0.95415 4.981%

1.50 4.916% 0.92891 5.363%

2.00 5.099% 0.90305 5.646%

2.50 5.253% 0.87694 5.869%

3.00 5.386% 0.85079 6.054%

3.50 5.504% 0.82478 6.211%

4.00 5.609% 0.79901 6.347%

4.50 5.705% 0.77359 6.467%

5.00 5.792% 0.74857 6.575%

100 1 LIBOR+( )
1 LIBOR+
-------------------------------------------- 100=

PVfloating e
r1– T1

FLOAT1 NOTIONAL+( )=

DFi e
ri– ti=
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Step 2: Find the implied forward rates between adjacent periods. This can be done using
the forward rate formula from Chapter 2, that is, 

where fi,j is the implied forward rate of interest on a loan beginning at time Ti and ending
at time Tj. The implied forward rate on a six-month loan, for example, is 

The discount factors in the above table are also inextricably linked to forward rates. The
price of a six-month discount bond with a par value of one dollar is 0.97821, and the
price of a one-year discount bond is 0.95415. That means that the implied price of a six-
month discount bond in six months is 0.95415/.97821 or 0.97540. Its forward rate of
return is 

on an annualized basis.

Step 3: Find the expected floating rate interest payments. Recall that the floating rate
used to determine the amount of the floating rate payment is the one prevailing at the
beginning of the period. The first floating rate payment is therefore known today and is
100(e0.04405(0.5) – 1) = 2.2272. The amount of the second floating rate payment is an
expected value based on the six-month forward rate starting in six months, that is,
100(e0.04981(0.5) – 1) = 2.5217. The remaining expected floating rate payments are as
shown in the table below.

Years to
Maturity

Spot
Rate

Discount
Factor

Implied
Forward Rate

Implied Forward
Discount Factor

0.00 4.000% 1.00000

0.50 4.405% 0.97821 4.405% 0.97821

1.00 4.693% 0.95415 4.981% 0.97540

1.50 4.916% 0.92891 5.363% 0.97354

2.00 5.099% 0.90305 5.646% 0.97217

2.50 5.253% 0.87694 5.869% 0.97108

3.00 5.386% 0.85079 6.054% 0.97018

3.50 5.504% 0.82478 6.211% 0.96942

4.00 5.609% 0.79901 6.347% 0.96876

4.50 5.705% 0.77359 6.467% 0.96818

5.00 5.792% 0.74857 6.575% 0.96766

fi j,

rjTj riTi–

Tj Ti–
-------------------------=

f0.5 1,
0.04693 1( ) 0.04405 0.5( )–

1 0.5–
----------------------------------------------------------------------- 4.981%= =

f0.5 1,
0.97540( )ln

0.5
-------------------------------- 4.981%= =
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Step 4: Take the present value of the expected floating rate payments by multiplying each
expected payment by the corresponding discount factor. This table summarizes the
results:

Surprisingly, or perhaps not so surprisingly, the present value of the floating rate bond
equals 100. The intuition for this result is simple. Since the expected floating rate payment
is determined from the forward rates of the zero-coupon yield curve and the zero-coupon
yield curve contains the discount factors used to bring the cash flows back to the present,
their effects outset each other, making the present value of the loan equal to its par value. 

ILLUSTRATION 18.3 Find fixed rate on plain-vanilla interest rate swap given zero-coupon 
yield curve.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the fixed rate on a five-year, fixed-for-floating, plain-vanilla interest rate swap.

Years to
Maturity

Spot
Rate

Discount
Factor

Implied
Forward Rate

Expected
Cash Flow

0.00 4.000% 1.00000

0.50 4.405% 0.97821 4.405%     2.2272

1.00 4.693% 0.95415 4.981%     2.5217

1.50 4.916% 0.92891 5.363%     2.7176

2.00 5.099% 0.90305 5.646%     2.8630

2.50 5.253% 0.87694 5.869%     2.9782

3.00 5.386% 0.85079 6.054%     3.0733

3.50 5.504% 0.82478 6.211%     3.1541

4.00 5.609% 0.79901 6.347%     3.2244

4.50 5.705% 0.77359 6.467%     3.2865

5.00 5.792% 0.74857 6.575% 103.3421

Years to
Maturity

Spot
Rate

Discount
Factor

Implied
Forward Rate

Expected
Cash Flow

PV of Expected
Cash Flow

0.00 4.000% 1.00000

0.50 4.405% 0.97821 4.405%     2.2272   2.1786

1.00 4.693% 0.95415 4.981%     2.5217   2.4061

1.50 4.916% 0.92891 5.363%     2.7176   2.5244

2.00 5.099% 0.90305 5.646%     2.8630   2.5855

2.50 5.253% 0.87694 5.869%     2.9782   2.6117

3.00 5.386% 0.85079 6.054%     3.0733   2.6147

3.50 5.504% 0.82478 6.211%     3.1541   2.6014

4.00 5.609% 0.79901 6.347%     3.2244   2.5763

4.50 5.705% 0.77359 6.467%     3.2865   2.5424

5.00 5.792% 0.74857 6.575% 103.3421 77.3590

Total 100.00      
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At inception, the value of a swap is 0. Since the present value of the floating rate leg is
100 on a reset date, this means that the fixed rate on a fixed-for-floating swap is that rate
that makes the present value of the fixed rate leg equal to 100. This rate cannot be com-
puted directly, and must be determined iteratively using the present value formula (18.7). At
a 7% fixed rate, the present value of the fixed rate is too high, as shown below. 

Since the present value is higher than 100, we must lower the fixed rate. If our next guess is
5.8124%, we will find that the present value of the fixed rate leg is 100. Alternatively, we
can use the Microsoft Excel SOLVER function to assist us in our work.

The OTC swap dealer will set his bid-ask quotes surrounding this fixed rate. Assuming the
bid/ask spread is four basis points, the dealer might quote a bid rate of 5.80% (i.e., the
fixed rate the counterparty would receive while paying floating) and an ask rate of 5.84%
(i.e., the fixed rate the counterparty would pay while receiving floating).

Fixed Rate: 7.0000%

Years to Maturity Spot Rate Promised Cash Flow PV of Promised Cash Flow

0.00 4.000%

0.50 4.405%     3.5000   3.4237

1.00 4.693%     3.5000   3.3395

1.50 4.916%     3.5000   3.2512

2.00 5.099%     3.5000   3.1607

2.50 5.253%     3.5000   3.0693

3.00 5.386%     3.5000   2.9778

3.50 5.504%     3.5000   2.8867

4.00 5.609%     3.5000   2.7965

4.50 5.705%     3.5000   2.7076

5.00 5.792% 103.5000 77.4772

Total 105.0900  

Value of swap   5.0900

Fixed Rate: 5.8214%

Years to Maturity Spot Rate Promised Cash Flow PV of Promised Cash Flow

0.00 4.000%

0.50 4.405%     2.9107   2.8473

1.00 4.693%     2.9107   2.7773

1.50 4.916%     2.9107   2.7038

2.00 5.099%     2.9107   2.6285

2.50 5.253%     2.9107   2.5525

3.00 5.386%     2.9107   2.4764

3.50 5.504%     2.9107   2.4007

4.00 5.609%     2.9107   2.3257

4.50 5.705%     2.9107   2.2517

5.00 5.792% 102.9107 77.0361

Total 100.0000  

Value of swap   0.0000
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ILLUSTRATION 18.4 Value of swap between interest payments.

Suppose that we entered the swap in Illustration 18.3, and are receiving fixed at a rate of
5.8214% and paying floating. Two months has elapsed, and the new zero-coupon yield curve is

ri = 0.05 + 0.01ln(1 + Ti)

Compute the current value of the swap.

The current value of the swap, from our perspective, is the present value of the fixed-
rate payments (i.e., what we receive) less the present value of the floating rate payments (i.e.,
what we pay). The first step is to find the discount rate (factor) for each cash flow by substi-
tuting into the term structure equation. We next take the present value of the fixed rate pay-
ments (equation (18.7)), and, finally, we take the present value of the expected floating rate
payments using equation (18.9). The table that follows summarizes the computations. Note
that the first payment on the floating rate leg, 2.2272, was set two months earlier. 

Fixed Rate Leg

Fixed Rate: 5.8214%

Years to Maturity Spot Rate Promised Cash Flow PV of Promised Cash Flow

0.00

0.33 5.288%     2.9107   2.8599

0.83 5.606%     2.9107   2.7779

1.33 5.847%     2.9107   2.6924

1.83 6.041%     2.9107   2.6055

2.33 6.204%     2.9107   2.5184

2.83 6.344%     2.9107   2.4319

3.33 6.466%     2.9107   2.3463

3.83 6.576%     2.9107   2.2622

4.33 6.674%     2.9107   2.1797

4.83 6.764% 102.9107 74.2142

Total 96.8884

Value of swap -3.5527

Floating Rate Leg

Years to

Maturity

Spot

Rate

Discount

Factor

Implied

Forward Rate

Expected

Cash Flow

PV of Expected

Cash Flow

0.00 5.000% 1.0000

0.33 5.288% 0.9825 5.288%     2.2272     2.1883

0.83 5.606% 0.9544 5.818%     2.9520     2.8172

1.33 5.847% 0.9250 6.249%     3.1739     2.9359

1.83 6.041% 0.8952 6.559%     3.3340     2.9844

2.33 6.204% 0.8652 6.800%     3.4584     2.9923

2.83 6.344% 0.8355 6.996%     3.5599     2.9742

3.33 6.466% 0.8061 7.161%     3.6454     2.9386

3.83 6.576% 0.7772 7.304%     3.7193     2.8906

4.33 6.674% 0.7489 7.429%     3.7842     2.8338

4.83 6.764% 0.7212 7.540% 103.8421   74.8858

Total 100.4411
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Note also that the present value of the floating rate leg was determined using the full set
of computations performed in Illustration 18.3. This was unnecessary, since we have
already shown that the present value of the floating rate leg is simply the present value of
the sum of the next floating rate payment and the notional amount, that is,

PVfloating = e–0.05288(0.333)(2.2272 + 100) = 100.4411

As the table shows, the value of the swap is now –$3.5527, that is,

The fact that the swap has fallen in value from 0 should not be surprising—the duration
of the fixed rate leg is higher than the duration of the floating rate leg. Interest rates rose
over the past two months, hence the fixed rate leg fell in value by more than the floating
rate leg. To unwind the swap, we would have to pay $3.5527.

Valuation of an Inverse Floater

An inverse floater is like a floating rate bond in the sense that its interest pay-
ments are based on a reference (i.e., floating) rate.12 The only difference is that
instead of receiving the prevailing floating rate each period, we receive a constant
fixed rate less the reference rate (e.g., 10% less six-month LIBOR), that is,

Rate on inverse = Fixed rate – Reference rate (18.11)

Occasionally the inverse floater will be leveraged or supercharged, in which case
the reference rate is multiplied by a factor λ, where λ > 1. The rate on a lever-
aged inverse floater is 

Rate on inverse = Fixed rate – λ × Reference rate (18.12)

Occasionally the rate on the inverse will have a cap or a floor too. For ease of expo-
sition, we ignore both of these cases in the valuation and risk measurement discus-
sions below. Since the generic reference rates are either quarterly or semiannual,
generic inverse floaters have either quarterly or semiannual interest payments. 

In order to value an inverse floater, we must first forecast the expected inter-
est payments E(INVFLOATi), and then discount the expected interest payments
to the present. The valuation formula is

(18.13)

12 Inverse floaters first appeared in early 1986, after a period of sustained decreases in interest
rates. Investor floaters are well suited for investors who anticipate interest rates to fall. For a
detailed discussion of inverse floating rate swap structures, see Das (1994, pp. 428–453).

Value of swap PVfixed PVfloating–=
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where , the first payment, is treated separately to reflect the fact that the amount
of the first interest payment was set at the beginning of the period and is already
known. By definition, the payment on an inverse floater equals a fixed rate less
the reference floating rate, that is,

INVFLOAT = FIXED – FLOAT (18.14)

Thus, given the expected cash flows of a floating rate bond, we can identify the
expected cash flows and value of an inverse floater. 

ILLUSTRATION 18.5 Value of inverse floater given zero-coupon yield curve.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the value of a five-year, inverse floating rate bond whose payments are 10% less six-
month LIBOR.

The steps in the valuation of the inverse floater parallel those used for the floating
rate bond in Illustration 18.4.

Step 1: Find the discount rate (factor) for each cash flow by substituting into the term
structure equation. 

Step 2: Find the implied forward rates between adjacent periods. This can be done using
the forward rate formula from Chapter 2, that is, 

where fi,j is the implied forward rate of interest on a loan beginning at time Ti and ending
at time Tj.

Step 3: Find the expected floating rate interest payments. Recall that the floating rate used
to determine the amount of the floating rate payment is the one prevailing at the beginning
of the period. The first floating rate payment is therefore known today and is
100(e0.04405(0.5) – 1) = 2.2272. The first inverse floater payment is, therefore, 10/2 – 2.2272
= 2.7728. The expected of the second floating rate payment is an expected value based on
the six-month forward rate starting in six months, that is, 100(e0.04981(0.5) – 1) = 2.5217.
The expected amount of the second inverse floater payment is therefore 10/2 – 2.5217 =
2.4783. The remaining expected floating rate and inverse floating rate payments are as
shown in the following table. Note that the last payment of the floating rate loan,
103.3421, is the sum of the interest payment, 3.3421, and principal, 100. Likewise, the last
payment of the inverse floater, 101.16579, is the sum of interest, 10/2 – 3.3421 = 1.6579,
and principal, 100.

fi j,

rjTj riTi–

Tj Ti–
-------------------------=
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Step 4: Take the present value of the expected floating rate payments by discounting each
expected payment by the corresponding zero-coupon spot rate. The table below summa-
rizes the results.

As before, the present value of the floating rate bond equals 100. Since the expected
floating rate payment is determined from the forward rates of the zero-coupon yield
curve and the zero-coupon yield curve contains the discount factors used to bring the
cash flows back to the present, their effects outset each other, making the present value of
the loan equal to its par value. The present value of the inverse floater’s expected cash
flows is 92.9044, with no obvious interpretation.

Years to
Maturity

Spot
Rate

Implied
Forward Rate

Expected Forward
Discount Factor

Expected Inverse
Floater Payment

0.00 4.000%

0.50 4.405% 4.405%     2.2272     2.7728

1.00 4.693% 4.981%     2.5217     2.4783

1.50 4.916% 5.363%     2.7176     2.2824

2.00 5.099% 5.646%     2.8630     2.1370

2.50 5.253% 5.869%     2.9782     2.0218

3.00 5.386% 6.054%     3.0733     1.9267

3.50 5.504% 6.211%     3.1541     1.8459

4.00 5.609% 6.347%     3.2244     1.7756

4.50 5.705% 6.467%     3.2865     1.7135

5.00 5.792% 6.575% 103.3421 101.6579

Years to
Maturity

Spot
Rate

Implied
Forward

Rate

Expected
Forward
Discount
Factor

Expected
Inverse
Floater

Payment

PV of Expected Cash Flows

Floater
Inverse
Floater

0.00 4.000%

0.50 4.405% 4.405%     2.2272     2.7728     2.1786   2.7124

1.00 4.693% 4.981%     2.5217     2.4783     2.4061   2.3647

1.50 4.916% 5.363%     2.7176     2.2824     2.5244   2.1202

2.00 5.099% 5.646%     2.8630     2.1370     2.5855   1.9298

2.50 5.253% 5.869%     2.9782     2.0218     2.6117   1.7730

3.00 5.386% 6.054%     3.0733     1.9267     2.6147   1.6393

3.50 5.504% 6.211%     3.1541     1.8459     2.6014   1.5224

4.00 5.609% 6.347%     3.2244     1.7756     2.5763   1.4188

4.50 5.705% 6.467%     3.2865     1.7135     2.5424   1.3256

5.00 5.792% 6.575% 103.3421 101.6579   77.3590 76.0983

Total 100.0000 92.9044
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The valuation of an inverse floater can also be addressed in a different man-
ner. Consider the value of the fixed rate bond (18.7) where the fixed rate is one-
half the fixed rate in the inverse floater, that is,

(18.15)

Suppose we buy two of the fixed rate bonds valued using (18.7) and sell a
floating rate bond valued using (18.9). The portfolio value equals the value of
an inverse floater, that is,

(18.16)

Since the floating rate loan can be valued succinctly as (18.9) and the fixed rate
loan can be valued as (18.7), it is simplest to value the inverse floater as

PVinvfloater = 2 × PVfixed/2 – PVfloating (18.17)

ILLUSTRATION 18.6 Value of inverse floater as difference between two fixed rate bonds and 
floating rate bond.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the value of a five-year, inverse floating rate bond whose payments are 10% less six-
month LIBOR.

Consider the steps in the valuation of the inverse floater in Illustration 18.5, but add
the expected cash flows and present value of expected cash flows of the two fixed-rate
bonds with 5% (annualized) interest payments.
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Note that the difference in the values of the two fixed rate bonds and the floating rate
bond equals the value of the inverse floater, that is,

192.0044 – 100 = 92.0044

The function,

OV_IR_FLOAT_INVERSE(reset, fixed, npaytr, freq, nxtim, face, term, rate, vd)

can be used to value an inverse floater. The arguments of the function are: reset, the
annualized interest rate set at the last reset date (i.e., the rate used at the time of the next
payment); fixed, the fixed rate; ncoupr, the number of coupons remaining; freq, the num-
ber of coupons per year; nxtim, the time to the next coupon payment expressed in years;
face, the notional amount of the inverse floater; term, a vector of times to maturity of
zero-coupon rates; rate, a vector of zero-coupon rates; and, vd, an indicator variable set
equal to v or V to return the value of the inverse floater, or d or D to return the duration
of the inverse floater.

Duration of an Inverse Floater

An unusual feature of an inverse floater is that its value is extremely sensitive to
interest rate movements. To compute the duration of an inverse floater, we rear-
range (18.16) as

2 × PVfixed/2 = PVfloating + PVinvfloat (18.18)

For an additive shift in the zero-coupon yield curve, this means that 

(18.19)

where D is duration or the percentage change in bond value for a given shift in
the yield curve. Rearranging to isolate Dinvfloat, we get

Years
to

Maturity
Spot
Rate

Implied
Forward

Rate

Expected
Floating

Rate
Payment

Expected
Inverse
Floater

Payment

Fixed-
Rate

Payment
5%

PV of Expected Cash Flows

Floater
Inverse
Floater

Fixed 
Rate

0.00 4.000%

0.50 4.405% 4.405%     2.2272     2.7728     5.0000     2.1786   2.7124     4.8911

1.00 4.693% 4.981%     2.5217     2.4783     5.0000     2.4061   2.3647     4.7708

1.50 4.916% 5.363%     2.7176     2.2824     5.0000     2.5244   2.1202     4.6445

2.00 5.099% 5.646%     2.8630     2.1370     5.0000     2.5855   1.9298     4.5153

2.50 5.253% 5.869%     2.9782     2.0218     5.0000     2.6117   1.7730     4.3847

3.00 5.386% 6.054%     3.0733     1.9267     5.0000     2.6147   1.6393     4.2540

3.50 5.504% 6.211%     3.1541     1.8459     5.0000     2.6014   1.5224     4.1239

4.00 5.609% 6.347%     3.2244     1.7756     5.0000     2.5763   1.4188     3.9951

4.50 5.705% 6.467%     3.2865     1.7135     5.0000     2.5424   1.3256     3.8679

5.00 5.792% 6.575% 103.3421 101.6579 205.0000   77.3590 76.0983 153.4572

Total 100.0000 92.9044 192.9044

2 Dfixed 2⁄×
PVfloating

PVfixed 2⁄
-----------------------

 
 
 

Dfloating

PVinvfloat

PVfixed 2⁄
-----------------------

 
 
 

Dinvfloat+=
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(18.20)

Keeping in mind that the duration of the floating-rate bond is the time until the
next interest payment (i.e., a maximum of six months for the six-month LIBOR
rate), (18.20) shows that the duration of the inverse floater is about four times
the duration of the fixed rate bond (two times the duration of the fixed rate
bond in the numerator divided by a quantity approximately equal to 0.5).

ILLUSTRATION 18.7 Find duration of inverse floater.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the duration of a five-year inverse floating-rate bond whose payments are 10% less
six-month LIBOR.

First, compute the duration of the two fixed-rate bonds. The individual contribu-
tions of the durations of each of the cash flows are summarized below.

The duration of the inverse floater is therefore

Years
to

Maturity
Spot
Rate

Fixed Rate
Payment 

5%

PV of
Fixed Rate
Payment

Proportion
of 

Total

Contribution
to Total
Duration

0.00 4.000%

0.50 4.405%     5.0000     4.8911 0.02535 0.01268

1.00 4.693%     5.0000     4.7708 0.02473 0.02473

1.50 4.916%     5.0000     4.6445 0.02408 0.03612

2.00 5.099%     5.0000     4.5153 0.02341 0.04681

2.50 5.253%     5.0000     4.3847 0.02273 0.05682

3.00 5.386%     5.0000     4.2540 0.02205 0.06616

3.50 5.504%     5.0000     4.1239 0.02138 0.07482

4.00 5.609%     5.0000     3.9951 0.02071 0.08284

4.50 5.705%     5.0000     3.8679 0.02005 0.09023

5.00 5.792% 205.0000 153.4572 0.79551 3.97755

Total 192.9044 1.0000  4.4688  

Dinvfloat

2 Dfixed 2⁄×
PVfloating

PVfixed 2⁄
-----------------------

 
 
 

Dfloating–

PVinvfloat

PVfixed 2⁄
-----------------------

-------------------------------------------------------------------------------------=

Dinvfloat

4.4688
100

192.0044
------------------------- 

  0.5–

92.0044

192.0044
-------------------------

--------------------------------------------------------------- 8.7411= =
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RISK MANAGEMENT LESSON: ORANGE COUNTY INVESTMENT POOL

The collapse of the Orange County Investment Pool (OCIP) in 1994 has been
described as one of the worst “derivatives disasters” in history. Disaster to be
sure—the taxpayers of Orange County reportedly lost $1.7 billion, about the
same amount as the market capitalization of Bethlehem Steel, a DJIA compo-
nent, at the time.13 But was Orange County a derivatives disaster? No, not
really. It was an enormous bet on interest rates that went awry. 

The key player in the Orange County controversy was Robert L. Citron,
Orange Country’s Treasurer. As Treasurer, he supervised tax collection and the
investment of funds. Like any other municipality, its problem is cash management.
Tax revenue is collected a few times during the year, while cash disbursements are
made over the entire year. To ensure that cash disbursements are unencumbered,
municipalities generally invest tax revenue in highly liquid, short-term money mar-
ket instruments (or, as noted Chapter 17, reverse repurchase agreements). In this
way, funds in the investment pool generate additional revenue but can be with-
drawn quickly and without loss as they are needed. But, Citron’s strategy was dif-
ferent. In place of investing in short-term instruments, he invested in intermediate-
term U.S. Treasuries, agency notes, corporate notes, and certificates of deposit with
average maturities of about four years. From a historical standpoint, the yield
curve is usually upward sloping. This means that the rates of return on intermedi-
ate-term bonds will generally be higher than short-term instruments. If interest
rates do not change, a strategy such as Citron’s will typically produce returns
higher than money-market rates. If interest rates change, however, the situation is
less clear. Since the duration of the intermediate-term bonds is higher than the
duration of money market instruments, an unexpected increase in rates will cause
the prices of the intermediate-term bonds to fall at a much quicker rate than the
short-term rates, and vice versa. This is particularly dangerous for a municipality
whose cash disbursement needs may require that the intermediate-term bonds be
sold at a loss. Thus, at its most basic level, Citron’s strategy was speculative. He
was placing a bet that interest rates would be stable or fall.

The next twist in Citron’s strategy was that he used repo agreements to
increase the leverage (and, hence, duration) of the investment portfolio. In June
1990, for example, the investment pool had a leverage ratio of 1.5. A leverage
ratio of one implies that the pool has no borrowed funds. A leverage ratio of 1.5
means that Citron had entered repurchase agreements with half the notes in the
investment portfolio, and then used the cash proceeds to buy more notes.14

Although OCIP used term repos, their maturities were six months or less so
their effective duration was near zero. Consequently, if the duration of the orig-
inal asset portfolio was 4, the increased leverage through repo agreements

13 For a very readable and entertaining recount of the Orange County disaster and its chief
instigator, County Treasurer Robert L. Citron, see Jorion (1995). Much of the material used
in this vignette was drawn from this source. Miller and Ross (1997) argue that, in December
1994, OCIP was neither insolvent nor illiquid and its financial condition did not mandate
bankruptcy.
14 In industry parlance, the interest rate strategy of borrowing short-term and buying long-
term is called “riding the yield curve.”
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increases the fund’s duration exposure to 6. In a stable or declining interest rate
environment, the strategy could be immensely profitable. And, it was. From the
beginning of June 1990 until the end of December 1993, the Federal Reserve
lowered the fed funds rate15 no less than 18 times, taking it from a level of
8.25% to a level of 3% as shown in the figure below. Six-month money market
rates (Eurodollar time deposits) fell accordingly, from 8.3125% in June 1990 to
3.4375% in December 1993. At the same time, the yield curve steepened (i.e.,
the spread between the five-year swap rate and six-month LIBOR widened).

What was Citron’s response? Increase leverage, of course. If the bet worked
well in the past, why not double up? And, double up he did. By the end of April
1994, the leverage ratio stood at 2.71. Not only had he reversed out of the secu-
rities he owned, but he reversed out of the securities he bought with the cash
proceeds he received from the original repos. Assuming the intermediate-term
bonds in the original portfolio had a duration of 4, the duration of the overall
portfolio now stood at a whopping 10.84! In other words, a 100 basis point
upward shift in the yield curve would cause the overall portfolio value to fall by
nearly 11%.

The table below summarizes the OCIP portfolio as of the end of April 1994.
The data were drawn from Jorion (1995, p. 92, Table 10.2). Note that, while
the total face value of the securities in the portfolio was $19.86 billion, $12.53
billion of the securities were financed using repo agreements, leaving a net port-
folio value of the OCIP of only $7.33 billion. The leverage ratio was $19.86/
$7.33 or 2.71. As noted earlier, the lion’s share of the portfolio was invested in
intermediate-term Treasury notes, agency notes, corporate notes, and certifi-
cates of deposit. The last column contains the average maturity of the securities

15 The fed funds rate is set by the Federal Reserve and is a target for the interest rate at which
banks lend to each other overnight. While the rates on interbank loans are market-determined,
the Fed can influence rates by supplying as much liquidity as there is for demand at the target
rate. As the U.S. short-term benchmark, the Fed funds rate influences market interest rates
throughout the world.
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in each category. For the fixed rate notes, the average maturity of the securities
in the category is a rough approximation for the category’s duration. For the
floating rate agency issues, however, this is not the case. While floating rate
agency notes have a duration near zero, the face value of the floating rate notes
was less than 10% of the $5.69 billion face value of the “Agency floating rate
notes” category. More than two-thirds consisted of about 40 inverse floaters
with a weighted average time to maturity of about four years and a weighted
average fixed rate of about 11.64% versus six-month LIBOR. Using these aver-
age parameters and the zero-coupon yield curve on April 29, 1994, the duration
of these inverse floaters was approximately 11.1. With $4 billion in inverse
floaters, a one hundred basis point increase in the yield curve would result in a
reduction in value of $444 million. Put simply, by the beginning of 1994, OCIP
had placed an extraordinarily large bet that interest rates would remain steady
or fall.

 Interest rates in 1994 were anything but steady. The Federal Reserve
increased the fed funds rate six times during 1994, as is shown in the figure
below. Money-market rates and intermediate-term bond rates also rose. What
were the consequences? OCIP suffered extraordinary losses from (1) the decline
in value of their leveraged fixed-rate bond position; (2) the decline in value of
their inverse floater position; and (3) increased financing costs on the repos.16 By
December 1994, OCIP had reportedly lost $1.7 billion. The positions in the
highly leveraged intermediate-term bonds were liquidated, and reinvested in
money-market instruments. 

Asset Face Value (in millions) Average Maturity

Treasury notes        582   5

Agency fixed rate notes     8,480   4

Agency floating rate notes     5,693   4

Corporate notes     1,912   4

Mortgage-backed securities        127 10

Certificates of deposit     1,609   4

Mutual funds        421 n/a

Discount notes        686   0

Commerical paper        350   0

Total portfolio value   19,860

Repos –12,529

Net portfolio value     7,331

Leverage 2.71

16 In using short-term borrowings to finance the purchase of long-term, fixed rate bonds, one
faces risk of the short-term rate rising above the fixed coupon rate.
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Clearly, Citron’s investment strategy is not difficult to understand. It was a
leveraged bet that interest rates would remain steady or fall. The strategy had
been profitable in the years prior to 1994 because interest rates fell. When inter-
est rates reversed direction at the beginning of 1994, Citron’s fortunes changed
for the worse. 

Could the situation have been avoided? Absolutely! The investment strategy
was entirely inappropriate for a municipality in managing its cash flows. Like
controversies discussed in earlier chapters, the culprits are:

1. Hubris. Citron’s astonishing performance in early years instilled overconfi-
dence, as reflected by the fact that he dramatically increased the leverage of the
investment pool through the use of repurchase agreements and inverse floaters.
The overconfidence later turned to arrogance when he ignored the warnings of
investment banks such as Goldman Sachs and Merrill Lynch about the possible
consequences of interest rate advances.

2. Lack of meaningful supervision. Nominally, Citron had five elected supervisors.
Unfortunately, by most accounts, none of them had a meaningful understand-
ing of OCIP’s investment strategy and/or how it was being executed. This situa-
tion is particularly egregious for OCIP since no one appeared to question what
led to the abnormal performance of the pool. Municipalities aimed at managing
cash flows should produce small, safe returns using money market instruments.
But Citron’s returns were much higher. This should have been the supervisors’
red flag. Instead they left him alone to conduct his wizardry.  

INTEREST RATE CAPS, FLOORS, AND COLLARS

Interest rate caps and floors are OTC agreements that protect buyers and sellers
of floating rate notes against adverse movements in interest rates. A firm with a
floating rate loan, for example, faces the risk that its periodic interest payment
will jump to a level too high to manage given the firm’s current cash flow. By

6-month LIBOR Fed funds rate 5-yr. swap
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buying an interest rate cap, the firm can eliminate its interest rate risk exposure
above a specified level. Conversely, an individual holding a floating rate note
may want to limit his exposure to rates falling below a certain level. Buying an
interest rate floor protects the floating rate receiver from such movements. 

An interest rate collar involves buying an interest rate cap and selling an
interest rate floor. The purchase of the cap offers protection from unexpected
increases in the floating rate. The sale of the floor subsidizes the cost of the cap
through a willingness to forfeit any interest savings if the floating rate falls.
Interest rate collars are also marketed as OTC agreements. 

There exists a put-call parity relation between the floating rate, a cap, and a
floor. If you borrow at a floating rate, buy an interest rate cap with a cap rate of
RX, and sell an interest rate floor with a floor rate of RX, you have transformed
your floating rate loan into a fixed rate loan at RX.

An important element in valuing caps and floors is contained in the reset
mechanics of floating rate loans. Recall that floating rate loans generally have
the interest rate set at the beginning of the payment period. Suppose you borrow
$100 million for five years at three-month LIBOR. Recall that on such loans, the
interest rate is set at the beginning of the period (i.e., on the reset date) and
interest payment is made at the end. If the current three-month LIBOR rate is
7%, the payment made in three months will be

$100,000,000 × (0.075/4) = $1,875,000

In three months, the interest rate is reset. Suppose, at that time, the three-month
LIBOR rate is 8%. The interest payment in six months will be 

$100,000,000 × (0.08/4) = $2,000,000

Suppose at the time you borrowed the money, you also bought a 7%, five-year inter-
est rate cap based on three-month LIBOR. By convention, there is no protection on
the first interest payment, since its amount is already known. The second payment is
protected, however. On the first reset date in three months, the prevailing three-
month LIBOR rate (8% in this illustration) is compared with the cap rate, 7%, and
the difference in the rates is paid three months later. Thus, although you must make
a $2 million interest payment in six months, you will receive a payment of 

$100,000,000 × [(0.08 – 0.07)/4] = $250,000

on the interest rate cap agreement. The net interest payment of $1,750,000
implies an annualized interest rate of 7%, exactly equal to the cap rate. 

Valuation of Caps, Floors, and Collars

To value an interest rate cap, we use a portfolio of European-style call options,
with each option’s expiration corresponding to a reset date of the underlying float-
ing-rate bond. Assuming the forward three-month LIBOR rate at time i, Fi, is log-
normally distributed and RX is the known interest rate cap (i.e., exercise price), the
value of the first reset option (called a caplet) and RX is the interest rate cap, 
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(18.21)

where

,   

ti represents the time until the reset date, and ti+1 represents the time until the
payment date for the i-th reset. Two different times appear in (18.21) because
the interest rate is set at the beginning of the reset period while the interest pay-
ment is made at the end of the period. Note that the volatility rate, σi, is specific
to the time to the i-th reset date. (We will discuss the term structure of volatility
later in this section.) The overall value of the interest rate cap is the sum of the n
caplets in the interest rate cap agreement, that is,

(18.22)

An interest rate floor agreement can be developed in a similar manner. Since
the interest rate floor provides protection against downward movements in the
floating rate, each floorlet is valued using a put option formula, that is, 

(18.23)

and the overall value of an interest rate floor is 

(18.24)

If you buy a cap and sell a floor with the same terms, the value of each com-
bined caplet and floorlet is 

(18.25)

Summing the values across the n payments produces the value of an interest rate
swap in which you pay fixed at rate RX and receive floating.

As noted earlier, the above valuation procedure uses a separate volatility for
each period. These volatilities are called forward forward volatilities because
they are the expected future volatility of the forward rate of interest. That is,
each volatility rate is the forward volatility of a one-period forward rate that
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will exist in the future. It is not surprising, therefore, that some refer to this
curve as the forward volatility curve. It is more common in practice, however, to
see a single volatility used for all of the caplets (floorlets) in the cap (floor) for
reporting purposes. These are called flat volatilities. If the flat volatilities for
caps or floors for a number of maturities are available, you can deduce the spot
volatility term structure by using a bootstrapping technique. Bootstrapping is
analogous to computing the implied forward rate from the zero-coupon yield
curve. If the one-period and two-period flat volatilities are known, we can infer
the expected one-period volatility in one period. 

ILLUSTRATION 18.8 Value interest rate cap given zero-coupon yield curve and a flat volatility 
rate curve.

Suppose that the current zero-coupon yield curve is 

ri = 0.05 + 0.01ln(1 + Ti)

and that the flat volatility rate on a one-year cap is 30%. Compute the value of a one-
year, 6% interest rate cap where the underlying floating rate loan has quarterly pay-
ments. Assume that the notional amount of the loan is $100,000.

The first step is to generate the zero-coupon yield curve and deduce the implied for-
ward rates. The spot rates in the table below are computed directly from the zero-coupon
yield curve given above. The continuously componded forward rates are computed in the
usual fashion, that is,

where fi,j is the implied forward rate of interest on a loan beginning at time Ti and ending
at time Tj. To convert the continuously compounded forward rate to a quarterly-com-
pounded rate (i.e., the standard manner in which Eurodollar rates are quoted), we use

The three-month forward rate in six months, for example, is

Years to
Maturity

Spot
Rate

Discount
Factor

Implied Forward Rate

Continuous Quarterly

0.00 5.000% 1.00000

0.25 5.223% 0.98703 5.223% 5.257%

0.50 5.405% 0.97333 5.588% 5.627%

0.75 5.560% 0.95916 5.868% 5.911%

1.00 5.693% 0.94466 6.094% 6.140%

fi j,

rjTj riTi–
Tj Ti–
-------------------------=

f i j,
Q e

fi j, Tj Ti–( )
1–

Tj Ti–
----------------------------------=

f i j,
Q e

0.05588 0.5 0.25–( )
1–

0.5 0.25–
----------------------------------------------------- 0.05627= =
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The next step is to value each of the caplets with the cap. Since the interest rate pay-
ment in three months has already been set, there is no caplet corresponding to the inter-
est rate payment in three months. The value of the caplet corresponding to the payment
in six months is

ci = 100,000e–0.05405(0.5)[(0.05257/4)N(d1) – (0.06/4)N(d2)] = 21.285

where

   and   

Note that the forward rate and cap rate have been divided by four because the rates are
annualized and the payments are quarterly. The value of each caplet is multiplied by
100,000 to account for the notional amount of the floating rate loan. For convenience,
the value of each caplet can be computed using the function

OV_TS_VALUE_CAPLET(f,rx,t1,t2,r2,v1)

where f is the forward rate, rx is the cap rate, t1 is the time until the reset date, t2 is the
time until the reset date payment, and v1 is the volatility rate corresponding to time t1. For
the caplet whose payment occurs in six months, the function produces a numerical value of 

OV_TS_VALUE_CAPLET(0.05257/4,0.06/4,0.25,0.5,0.05405,0.30) = 0.00021285

Multiplying by the notional amount of the loan, the caplet value is 21.285.
The remaining caplets are computed in a similar fashion. The value of the cap is

234.675, as is shown in this table:

VALUATION OF SWAPTIONS

A swaption is an option on an interest rate swap. It gives its holder the right to
enter into a certain interest rate swap at a certain time in the future. A firm may
know, for example, that in six months it will need to enter into a five-year float-
ing-rate loan agreement and will want to swap the floating rate interest pay-
ments for fixed rate interest payments. By buying a swaption, the firm receives
the right to receive six-month LIBOR and pay a fixed certain rate for a five-year
period beginning in six months. The specified fixed rate of the swaption is its
exercise price. If the rate on a five-year fixed versus floating interest rate swap is
less than the exercise price in six months, the firm will exercise the swaption. If

Years to
Maturity

Spot
Rate

Discount
Factor

Implied Forward Rate
Value of
CapletContinuous Quarterly

0.00 5.000% 1.00000

0.25 5.223% 0.98703 5.223% 5.257%

0.50 5.405% 0.97333 5.588% 5.627%   21.285

0.75 5.560% 0.95916 5.868% 5.911%   78.359

1.00 5.693% 0.94466 6.094% 6.140% 135.121

Cap value 234.765

d1

0.05257 0.06⁄( )ln 0.5 0.30( )2
0.25( )+

0.30 0.25
---------------------------------------------------------------------------------------------------= d2 d1 0.30 0.25–=



674 INTEREST RATE DERIVATIVES

it is greater, the firm will choose not to exercise and will enter a swap in the
marketplace. Because the firm has the right, but not the obligation, to enter the
swap underlying the swaption, it must pay for the privilege. Naturally, the firm
also has the alternative of entering a forward or deferred swap with no up-front
cost. Like all forward contracts, however, the firm is obligated to enter into the
swap agreement whether or not the terms are favorable relative to the then-pre-
vailing market rates.

An interest rate swap is an agreement to exchange a fixed rate bond for a
floating rate bond. At the start of the swap, the value of a floating rate bond
always equals the principal amount of the swap. A swaption can therefore be
regarded as an option to exchange a fixed rate bond for the principal amount of
the swap. If a swaption gives the holder the right to pay fixed and receive floating,
it is a put option on the fixed rate bond with an exercise price equal to the princi-
pal. If a swaption gives the holder the right to pay floating and receive fixed, it is a
call option on the fixed rate bond with an exercise price equal to the principal.

Valuation of Swaptions

Like in the valuation of caps and floors, the valuation of a swaption assumes that
the underlying forward (swap) rate is distributed log-normally at the option’s
expiration. The volatility of the forward rate, therefore, is the volatility of a for-
ward fixed rate on a fixed-for-floating swap. Suppose that at the swaption’s expi-
ration, the rate on an n-year swap is R. By comparing the cash flows on a swap
where the fixed rate is R to the cash flows on a swap where the fixed rate is RX,
we see that the payoff from the swaption consists of a series of cash flows equal to 

(18.26)

where L is the principal amount of the swap, and both  and  are expressed with
a compounding frequency of m times per year.

The cash flows are received m times per year for the n years of the life of the
swap. Suppose that the payment dates are t1, t2, . . ., tm measured in years. Each
cash flow is the payoff from a call on R with strike price RX. In other words, you
do not need a separate option value for each cash flow as you did for caps and
floors. One will suffice. The value of the cash flow at time ti (where ti = T + i/m) is

(18.27)

where 

,   

L

m
-----max R RX– 0,( )

L

m
-----e

riti–
FN d1( ) RXN d2( )–[ ]

d1

F RX⁄( )ln 0.5σ2
T+

σi T
---------------------------------------------------= d2 d1 σi ti–=
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is the forward rate on an n-year swap that begins at time T, and ri is the contin-
uously compounded zero-coupon interest rate for maturity ti. The swaption
value is therefore

(18.28)

Some of you will recognize that this formula is the present value of an annuity,
that is, 

(18.29)

The value of a put option is

(18.30)

Finally, it is worth noting that both caps/floors and swaptions are quoted in
terms of the Black (1976) model in the marketplace even though it is theoreti-
cally inconsistent to do so. The cap/floor market uses the short-term LIBOR rate
as the underlying source of uncertainty, while the swaptions market uses longer-
term forward rates. Since forward swap rates are nearly linear in the individual
forward rates, the log-normality assumption implicit in the Black model cannot
hold simultaneously for both individual forward rates and forward swap rates
(i.e., a linear combination of log-normal variates is not log-normal). Among
other things, this means that direct comparisons between quoted implied volatil-
ities for caps/floors and swaptions are improper. A general, all-encompassing
(albeit more computationally intensive) framework for valuing interest rate
products is provided in the next chapter.

ILLUSTRATION 18.9 Value swaption.

Suppose that the zero-coupon yield curve based on LIBOR is flat at 4% compounded
continuously. Compute the value of a three-year option on a five-year swap assuming the
swaption gives the holder the right to receive 4.2% fixed. Assume payments are made
semiannually and principal is 100. Assume also that the volatility of the forward rate on
five-year swaps in three years is 30%.

The right to receive fixed is a put option. You will exercise only when the fixed rate
on the five-year swap in three years is below 4.2%.

The put option swaption formula is

The sum of the discount factors is

L

m
-----e

riti–
FN d1( ) RXN d2( )–[ ]

i 1=

mn

∑

L

m
----- FN d1( ) RXN d2( )–[ ] e

riti–

i 1=

mn

∑

L

m
-----e

riti–
RXN d2–( ) FN d1–( )–[ ]

Put on swap
L

m
----- RXN d2–( ) FN d1–( )–[ ] e

riti–

i 1=

mn

∑=
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The value of the put in the squared brackets is

The value of the swaption is

SUMMARY 

This chapter deals with OTC interest rate products which have multiple cash flows
through time. A critical component in accurately valuing such derivative contracts
is knowing how to measure the zero-coupon yield curve. The first section describes
some commonly used data sources and estimation procedures. With the zero-cou-
pon curve in hand, we then focus on the valuation of fixed-for-floating interest rate
swaps and how they are used for risk management purposes. We then turn to the
valuation of interest rate caps, collars, and floors, as well as swaptions. 
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