A

Elementary Statistics

he purpose of this appendix is to provide a quick and informative review of

elementary statistics. Statistics is used in almost every facet of every life form
aviation to weather prediction. In the field of finance, one of its primary uses is
to characterize the rate of return distributions of risky securities or portfolios of
securities, although the principles apply to prices changes, earnings, or cash
flows of almost any sort. To clarify the use of the statistical concepts used in this
appendix, numerous illustrations are provided. To make the concepts in the
illustrations as usable as possible, we demonstrate how the computations the
computations can be performed using Microsoft Excel add-ins.

OBJECTIVES

After reviewing this Appendix, you should be able to:

. Understand the difference between a population and a sample.

. Understand the statistical properties of a probability distribution.

. Understand the properties of expectation operators.

. Estimate properties of population from a sample of observations drawn from
the distribution.

5. Understand the properties of important continuous distributions including the
normal distribution, the chi-square distribution, the ¢-distribution, and the F-
distribution.

6. Test the hypothesis that a given data series approximates the normal distribu-
tion.

7. Test the hypothesis that the mean of a population is zero.

8. Test the hypothesis that the means of two samples are equal when the samples
have equal and unequal variances.

9. Test the hypothesis that the means in a paired sample are equal.

10. Understand the distinction between Type I and Type II errors in statistical infer-
ence.

11. Understand p-values and the power of tests.

12. Test the hypothesis that the variance of two samples are equal.
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13. Test the hypothesis that a time series is autocorrelated.
14. Understand the relevance of the Central Limit Theorem in statistical inference.

POPULATION VERSUS SAMPLE

The need for statistics stems from a lack of complete information about a partic-
ular process. Statisticians refer to the total collection of observations or mea-
surements from the process as the (finite- or infinite-sized) population. Data
taken from the population via a particular study or experiment make up a
(finite-sized) sample.

In practice, Greek letters are commonly used to denote quantities that char-
acterize the population (such as u or o). These values are referred to as parame-
ters and are generally considered to be fixed and unknown. Parameter estimates,
denoted here by Greek letters with hats (such as i or &), are statistics calcu-
lated from the sample that are used as a best guess for the true parameter.
Because we may never know the values of the true population parameters, we
associate a value known a standard error, denoted s. , with each estimate. Thus
in using statistical methods, we can obtain estimates for the relevant parameters
and also quantify their uncertainty.

Summary of the Statistical Method

1. Identify the problem of interest.

2. Draw a random sample from the population.
3. Perform statistical tests on the sampled data.

4. Make inferences about the relevant population.

RANDOM VARIABLES

A random variable is a variable that takes on different values, each with a prob-
ability less than or equal to 1. The process that generates a random variable is
called a probability distribution. It can be thought of as a list of all possible val-
ues of the variable and the probability that each will occur. A coin toss, for
example, can be interpreted as a random variable generated from a binomial
probability distribution.

A discrete random variable may take on only a specific number of real val-
ues. Consider the outcomes from rolling a pair of dice. The possible outcomes
range from 2 to 12. If the dice are fair, each side of each die has an equal proba-
bility (i.e., a one in six chance) of appearing. If we enumerate all possible out-
comes, a total of 2 can appear with only one combination—(1,1), a total of 3
can appear with two combinations—(1,2) and (2,1), a total of four can appear
with three combinations—(1,3), (2,2), and (3,1), and so on. Figure A.1, Panel A
shows the frequency distribution of possible outcomes. A value of 7 appears
most frequently at f7 = 6. The total number of possible outcomes is
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If we rescale the frequencies so they add up to one, that is,

12 12

1
2= Xpi=l
i=2 i=2
we obtain the discrete probability density function (or discrete pdf) shown in
Figure A.1, Panel B.

FIGUREA.1  Frequency and probability distributions of outcomes from rolling a pair of fair dice.
Panel A. Frequency distribution
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A probability distribution is often characterized by its mean and variance.! The
definitions of mean and variance, in turn, are defined in terms of the expecta-
tions operator E. Assume that X, X5, X3, . . ., Xy represent the N possible out-
comes associated with the random variable X (i.e., the population). The mean or
expected value of X, denoted uy, is defined as

N
Hx = E(X) = zpixi (A.1)
i=1

where p; is the probability that X; occurs, and the sum of the probabilities
equals 1, that is,

Note that the mean is simply a weighted average of the possible outcomes, where
the probabilities serve as outcome weights. Table A.1 shows the individual terms
of the summation (A.1) for the above dice rolling illustration. The mean is 7.
Note that piy is the mean of the population and is distinct from the sample mean,
which is the average of the outcomes in a sample of size n (where n < N) drawn
from the underlying distribution. The sample mean is denoted fi .

TABLEA.1  Mean and variance of outcomes from rolling a pair of fair dice.

Outcome, Frequency, Probability, Expected Value, Variance,

Xi fi bi piX; pilX; - E(X)I?

2 1 0.0278 0.0556 0.6944

3 2 0.0556 0.1667 0.8889

4 3 0.0833 0.3333 0.7500

S 4 0.1111 0.5556 0.4444

6 5 0.1389 0.8333 0.1389

7 6 0.1667 1.1667 0.0000

8 5 0.1389 1.1111 0.1389

9 4 0.1111 1.0000 0.4444

10 3 0.0833 0.8333 0.7500

11 2 0.0556 0.6111 0.8889

12 1 0.0278 0.3333 0.6944

Total 36 1.0000 7.0000 5.8333

!Indeed, under the capital asset pricing model discussed in Chapter 3, risky securities/portfo-
lios are evaluated solely on the basis of these two parameters.
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Variance and Standard Deviation

The variance of a random variable measures the dispersion of the distribution
around the mean. The variance, denoted oY, is defined as

N
Var(X) = oy = EIX-EX)I” = ¥ pIX,- EX)) (A.2)
i=1

Like the mean, the variance is a weighted average of the squares of the devia-
tions of the outcomes on X from its expected value, with the probabilities serv-
ing as weights. Table A.1 also shows the individual terms of the summation (A-
2) for the dice rolling illustration. The variance is 5.8333. The (positive) square
root of the variance is called the standard deviation. The standard deviation (or
variance) of a rate of return distribution is a commonly used measure of the
total risk of a security.

Covariance and Correlation

In many applications in this book, we are interested in the joint distribution of
X with a second random variable Y. With a joint distribution, the outcomes are
in terms of both X and Y, and the probabilities are joint probabilities of the X-Y
pair occurring. The covariance of X and Y, denoted oyy, is defined as

Cov(X,Y) = oyy = E[(X-E(X))(Y-E(Y))]
N N
(A.3)
= >, > pi(X;—ECO)Y,; - E(Y))
i=1j=1

where p;; represents the joint probability of X and Y occurring. The covariance
is a measure of the linear association between X and Y. Covariance is positive
when both variables are above and below their means at the same time and is
negative when X is above its mean when Y is below its mean. Figure A.2 shows
the association between two variables X and Y when the covariance is positive
and negative.

Note that the covariance depends on the units in which X and Y are mea-
sured. To make the covariance scale-free, the association between X and Y is
often expressed in terms of the correlation coefficient,

(A.4)

The correlation coefficient always lies between -1 and +1.
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FIGURE A.2 Positive and negative covariance between two random variables.
Panel A. Positive covariance
Y
Mean of Y .
. : Mean of X X
Panel B. Negative covariance
Y
Mean of Y ) .
Mean of X X

Semivariance and Semi-Standard Deviation

The semivariance of a random variable measures the dispersion of the distribu-
tion around a constant By for only part of the probability distribution. The

lower semivariance, for example, is
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N
. . . 2 . 2
Lower semivariance = E[min(X -By, 0)7] = Z p;[min(X;- By, 0)7] (A.5)
i=1
The (positive) square root of the semi-variance is called the semistandard devia-
tion or, sometimes, the semideviation. Lower semistandard deviation of return,

where is set equal to the risk-free rate of interest, is a less commonly-used, but
more intuitively appealing, risk measure.

Semicovariance and Semicorrelation
Like semivariance is to variance, semicovariance is to covariance. The lower
semicovariance of X and Y is defined as

Semicovariance = E[min(X - By, 0)min(Y - By, 0)]

N N _ _ (A.6)
2 2 piimln(Xi— By, O)mm(Y]-— By, 0)
i=1j=1

where p;; represents the joint probability of X and Y occurring and By and By are
the boundaries for variables X and Y. The lower semicorrelation coefficient is

. . Lower semicovariance
Lower semicorrelation = e — (A.7)
Lower semideviationyLower semideviationy

and always lies between -1 and +1.

The skewness of a random variable measures the degree of asymmetry of the
distribution around the mean. The skewness, denoted 7, is third standardized
moment of the distribution and is defined as

EIX-EX) 1
—__3

3
o

N
Skew(X) = 2 X, - ECOT (A.8)

where o is the standard deviation of the distribution. Generally speaking, a dis-
tribution is positively skewed (right-skewed) if the higher tail is longer and neg-
atively skewed (left-skewed) if the lower tail is longer.

Kurtosis

The kurtosis of a random variable measures the degree of the “peakedness” of
the distribution around the mean. The kurtosis, denoted p, is fourth standard-
ized moment of the distribution and is defined as
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4 N
E[X-E(X 1
Kurt(X) = 7, = [—#]— = = Y X~ ECO1 (A.9)
o O -1

where o is the standard deviation. In most statistical software, excess kurtosis
rather than kurtosis is reported. Excess kurtosis is defined as 5 — 3. For a nor-
mal distribution, excess kurtosis equals 0. Positive excess kurtosis implies that
the distribution of X is more peaked in the center than the normal and has fatter
tails. Such a distribution is said to be “leptokurtic.” Negative excess kurtosis
implies that the distribution of X is flatter in the middle and has smaller tails.
Such a distribution is said to be “platykurtic.” Finally, when excess kurtosis
equals zero (like the normal), the distribution is said to be “mesokurtic.”

PROPERTIES OF EXPECTATION OPERATORS

Many finance applications, particularly those associated with portfolio selec-
tion, involve using expectations of the parameters of future security rate of
return distributions. Since a security portfolio is nothing more than a weighted
sum of its constituent securities, we are interested in understanding how random
security returns aggregate into portfolios. Table A.2 presents some key proper-
ties of expectations operators. In the table, X and Y are assumed to be random
variables, and @ and b are assumed to be known constants. In the remainder of
this section, we use these results in examining the properties of the formulas we
use to estimate the parameters of probability distributions.

ESTIMATION

Means, variances, and covariances are measured with certainty only if we have
the population (i.e., all possible outcomes) at our disposal. More typically, how-
ever, we have a sample from the population and want to make inferences about
the population. In this section, assume we have a sample of # data points from

TABLEA.2  Key properties of expectations operators. X and Y are random variables, and a
and b are known constants.

E(@aX +b)=aEX) + b (P-1)
E[(aX)*] = a®E(X?) (P-2)
Var(aX + b) = a?Var(X) (P-3)
E(X +Y) = EX) + E(Y) (P-4)
Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X,Y)  (P-5)

Also, if X and Y are independent,

E(XY) = E(X)E(Y) (P-6)
Cov(X,Y)=0 (P-7)
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the population. Our objective is to estimate characteristics of the population,
and then attempt to draw conclusions about the population parameters. An esti-
mator is the formula used to estimate a population parameter; an estimate is the
value obtained from an estimator for a particular sample.

Estimator of Mean

An estimator is said to be umbiased if the expected value of the estimator is
equal to the population parameter. The estimator of the sample mean is

R 1 <
ix ==X, (A.10)
i=1

This estimator is unbiased since its expected value equals the population mean,
that is,

. 1 < 1 (&

Estimator of Variance

The unbiased estimator of the variance of a random variable is

.2 1 < .2
& = n_—lgl(x"_“x) (A.11)

The reason n — 1 (rather than n) appears in the denominator is that, in order to
compute the sample variance, the sample mean must first be computed. This
places a constraint on the # data points in the sample. That is, the # observa-
tions must sum to z times the computed mean, [ty . This leaves 7 — 1 uncon-
strained observations with which to estimate the sample variance.

Estimator of Covariance and Correlation

The unbiased estimator for sample covariance is

. 1 < . :
Oxy = 7—1 Z (Xi_:uX)(Yi_luY) (Alz)

i=1
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The adjustment to the denominator is made because, in calculating the sum of
the products of the deviations in X and Y, there are # observations on the joint
outcomes of X and Y and thus # independent pieces of information. One piece
of information is used to calculate the means of X and Y, however. The sum of
all n observations is constrained to be equal to 7 times the means of X and Y,
respectively. As a result, there are degrees of freedom.

Finally, the sample correlation coefficient between the two variables is

n

> (X =iy (Y; - fiy) A
P ()
Pxy = n’_l = X (A.13)

o2 2 GxOy
> (X;=f) D (Y= fiy)
i=1 i=1

Estimator of Lower Semivariance

An estimator of sample semivariance is

1 n
Lower semivariance = — 2 min(X; - By, 0)2 (A.14)
n
i=1

The (positive) square root of the estimate of the semivariance provides our esti-
mate of the semistandard deviation. In applying (A.12) to return distributions,
the most common choices for By are the risk-free rate of interest and zero. The
choice of the risk-free rate is intuitive in the sense that it says we are only con-
cerned about holding a risky asset to the extent that its return might be below
what can be earned by placing the investment funds in a risk-free asset.

Estimators of Semicovariance and Semicorrelation

An estimator of sample semicovariance is

o lo © :
Lower semicovariance = - z{l 421 min(X; - By, O)mm(Y]-— By, 0) (A.15)
1=17=

where By and By are the upper boundaries of variables X and Y. The estimator
of the lower semicorrelation coefficient is

. . Lower semicovariance
Lower semicorrelation = — e (A.16)
Lower semideviation yLower semideviationy

and always lies between -1 and +1.
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Estimator of Skewness

An estimator of sample skewness is

. ~ \3
B n 2 X;—Hx
(n— 1)(n—2)i 6-X

=1

~

" (A.17)

where Ox is the estimated standard deviation of the distribution.? Positive
skewness implies that the distribution has a long tail to the right, and negative
skewness implies that it has a long tail to the left. Many financial models incor-
porate the behavioral assumption that investors gain satisfaction from positive
skewness in the rate of return distribution, holding other factors constant.

Estimator of Kurtosis

An estimator of sample excess kurtosis is

< V4
Xj—Hx 3(n-1)

| & || -Dn=3)

3 = nn+1) i

(n-1D)(n-2)(n=3), (A.18)

Excess kurtosis characterizes the peakedness or flatness of a distribution relative
to the normal distribution. Positive kurtosis indicates a relatively peaked distri-
bution, and negative kurtosis indicates a relatively flat distribution.

ILLUSTRATION A.1 Estimate mean, variance, standard deviation, skewness, and excess kurto-
sis of monthly stock returns for IBM.

The worksheet Al in the Excel file, A Illustrations.xls, contains 60 months of returns for
IBM and a value-weighted stock market index over the period January 2000 through
December 2004. Estimate the mean, variance, standard deviation, skewness, and kurto-
sis of IBM’s return series. Use the standard Excel statistical functions to perform your
computations. Comment on the levels of skewness and kurtosis.

To begin, examine the contents of the data file illustrated on the following page. The
first column contains the date of the month-end. The next two columns contain the rates
of return of IBM’s stock and a value-weighted stock market index. Note that rows 7
through 60 have been compressed some that the file contents can be displayed on one
page. You can adjust the height to see the contents of the cells if necessary.

2While it is beyond the scope of this appendix, the 1/(z — 1) allows for the fact that a degree of
freedom has been used in estimating the mean, and 7/(n — 2) is a small sample bias adjustment.
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A [ 8 | ¢ |

1 |Monthly holding period returns (2000-2004)
| 2 | Returns

3 Manth IBM 4 v index
i 20000131 0.04056 -0.03980
i 20000229 -0.08356 0.03180
i 20000331 0.14842 0.05350
E 20041029 0.04677 0.01750
Q 20041130 0.05203 0.04830
ﬁ 20041231 0.04605 0.03520

Rather than perform the computations of each estimator, we will rely on Microsoft
Excel add-ins. Some are part of the Excel add-in function library provided by Microsoft.
Others are part of the OPTVAL add-in function library that is part of the CD that accom-
panies this book. The same approach is used to apply the functions from either library.

The first step in applying an add-in function is to click on the “Insert” menu and
select “Function” as shown:

Insert I Format  Too

Cells...

Rows

Colurns
Worksheet

tl_& Function. .. |

¥

Clicking on “Function” will cause a menu to appear. The menu contains the different
sub-libraries of add-ins that are available. “All” contains the entire set of add-in func-
tions. It is so lengthy, it is cumbersome to use. In the Insert Function dialog box as
shown, “All” are the functions separated into categories according to their general pur-
pose. For this illustration, we need functions from the “Statistical” category.

Insert Function 2 x|

Search for a function:

Tvpe a brief description of what vou want to do and then G0 |
click Go

Or select a category: |Most Recently Used -
t Ely 1
Select a function: :I"O ST L0 =

Financial
Date & Time
IMath & Trig

:Statiskical
AYERAGE Lookup & Reference
Database
HYPERLINK Text -
Logical | |
YLOOKUP(lookup_¥1pformation -
Looks for a value in tHUser Defined S o el

in the same row from a column vou specify, By default, the table must be
sorted in an ascending order.

Help on this function QK I Cancel |

Clicking on “Statistical” will provide a list of statistical functions. The “Average”
function is used to compute the estimate of the mean using (A-10). When we click on the
function name, the following form appears. To insert the IBM return series in computing




Elementary Statistics 791

the mean, simply place the cursor in the Function Arguments dialog box to the right of
Number1 and highlight the cells B4 through B63 as shown, and then click “OK”:

Function Arguments _'7]5]
AVERAGE
Number1 [B4:663] 3] = {0.04056;-0.08356;1
Numher2| :K_] =

= 0.004080167
Returns the average (arithmetic mean) of its arguments, which can be numbers or names,
arrays, or references that contain numbers,

Number1: nunber1,number, ... are 1 to 30 numeric arguments For which you want
the average.

Formula result = 0.004080167
Help on this function oK I Cancel |

The illustration that follows summarizes the results. Note that the contents of cell B67 is
the mean monthly return of IBM, 0.00408. Cell C67 contains the mean return of the
market index and involves the function call “=<AVERAGE(C4:C63)”.

For your convenience, the Excel function names of all of the remaining estimators
are provided in column D. An inspection of the worksheet shows that cells B67 through
B71 have the following function calls:

=AVERAGE(B4:B63)
=VAR(B4:B63)
=STDEV(B4:B63)
-SKEW/(B4:B63)
=KURT(B4:B63)

The estimated skewness of IBM’s observed monthly returns is 0.96509. Positive
skewness implies that the return distribution is asymmetric and has a long tail on the
right. The estimated kurtosis is 2.44513. Positive excess kurtosis implies that the return
distribution is more peaked than the normal and has fatter tails.

B&7 - f =AVERAGE(B4.BA63)
A | B | C | D

1 |Monthly holding period returns (2000-2004)
| 2 | Returns

3 Month IBM L, VW index
EN 20000131 0.04056 -0.03980
| 5 | 20000229 -0.08356 0.03180
| 6 | 20000331 0.14842 0.05350
E 20041029 0.04677 0.01780
2 20041130 0.05203 0.04330
E 20041231 0.04605 0.03520
| B4 |
| B5 | Excel
ﬂ Parameter estimates function
i Mean I 0.00408 ! 0.00018 AVERAGE
ﬁ Variance 0.01077 0.00242 VAR
ﬂ Standard deviation 0.10378 0.04924 STDEV
| 70 |Skewness 0.96509 -0.31475 SKEW
| 71 |Kurtosis 2.44513 -0.58410 KURT
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To understand the meaning of the skewness and kurtosis parameter values in rela-
tion to the shape of the return distribution, it is useful to plot a histogram. A histogram
typically divides the distance between the minimum and maximum values of the sample
of observations into equal intervals and then tabulates the number of observations that
fall within each interval. The lowest monthly return for IBM during the sample period is
-22.6% in September 2002 and the highest is 35.4% in October 2002. The total number
of monthly returns is 60. In the following figure, we display the frequency distribution of
actual monthly returns for IBM during the period (i.e., the light-colored bars). We also
shown the frequency of returns that is expected if IBM’s returns were normally distrib-
uted during the period (i.e. the dark-colored bars).> Note that the patterns are just as
expected. During the sample period, IBM had more large positive returns and fewer large
negative returns relative to a normal distribution. This represents positive skewness.
Also, during the sample period, IBM had more instances in which the observed monthly
was very close to the mean. The peakedness shown in the histogram represents positive
excess kurtosis.

18
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g 8
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Monthly return

ILLUSTRATION A.2 Estimate covariance and correlation between IBM and stock market index
returns.

Using the monthly returns reported in the A2 worksheet of the Excel file, A Illustra-
tions.xls, estimate the covariance and correlation between the IBM and market return
series. Use the standard Excel statistical functions to perform your computations.

As noted earlier in this appendix, covariance and correlation measure the association
between two random variables. To get a sense of the relation between two variables, it is
useful to plot the series against one another. The figure below shows us that, when the
market return is positive, IBM’s return is positive, and, when the market return is nega-
tive, IBM’s return is negative. In other words, the returns of two series are positively cor-
related (have positive covariance).

3 The mean and the standard deviation of the normal distribution are set equal to the mean
and the standard deviation estimated for the sample, 0.00408 and 0.10378, respectively.
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The Excel functions for computing the covariance (A-12) and correlation (A-13) are
COVAR and CORREL, respectively. Using the information in the worksheet A2, the esti-
mates of covariance and correlation are:

B&7 - e =COVAR(B4BA3,C4CE3)
A | B [ C |

1 |Monthly holding period returns (2000-2004)
| 2 | Returns

3 Month IBM L MW oindex
L 20000131 0.04056 -0.03980
i 20000229 -0.08356 0.03180
| 6 | 20000331 0.14842 0.05350
E 20041029 0.04677 0.01780
Q 20041130 0.05203 0.04530
ﬁ 20041231 0.04605 0.03520
| B4 |
| 65 | Parameter Excel

{5151 estimate function
| B7 | covariance [_ooozaa 1 covar
| B8 |Correlation 0.68415 CORREL

The estimated correlation is 0.68415, which implies that the returns are strongly posi-
tively correlated.

ILLUSTRATION A.3 Estimate semivariance and semistandard deviation of return distributions.
Also estimate semicovariance and semicorrelation.

Using the information provided in the worksheet A3 in the Excel file, A lllustrations.xls,
estimate semivariance and semistandard deviation of the return series for IBM and the
market. Also, estimate semicovariance and semicorrelation between IBM and stock mar-
ket index returns. Compare the correlation and semicorrelation estimates and comment
on the difference.

The “Statistical” library in Excel contains the most commonly-used statistical func-
tions in applications from all disciplines. This book focuses exclusively on finance appli-
cations, and certain useful statistical functions are not included in the Excel statistical
library. Consequently, these functions are included in the OPTVAL function library.
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To use the OPTVAL functions, we click on the “User Defined” option in the Insert
Function menu as shown:

Insert Function ilﬂ

Search For a function:

Type a brief description of what you want to do and then G0 |
click Go

Or select a category: |Most Recently Used -
Maost R tly Used
Select a function: A“OS Scently 56 =

Financial e
Date & Time

Math & Trig
Skatistical

Lookup & Reference
Database

Text LI

Logical |-

AYERAGE(numberl 1 ¢ -tion
Returns the average ich can be
numbers or names, a ences thak contain numbers.,

Help on this function QK I Cancel

What will appear is the list of user-defined functions. They are clustered together in the
menu by virtue of the fact that they begin with the prefix “OV_”. The next term in the
function name describes the category. The statistical functions in the OPTVAL library
begin with “OV_STAT_” as shown:

Insert Function llll

Search for a function:

Type a brief description of what you want to do and then Go I
click Go

Or select a category: |User Defined j

Select a function:

OV _STAT_KURT ;l
OY_STAT_MEAN
Oy STAT OLS SIMPLE

0% STAT_SEMICOY i
OV_STAT_SEMIDEY
OV _STAT_SEMIVAR =l

0¥_STAT_SEMICOR(bx,x,by,¥)
Returns semi-correlation between series x and v with upper limits bx and by,

Help on this function oK I Cancel

The remaining part of the name corresponds to the nature of the computation. The
worksheet below illustrates the use of the lower semi-correlation function. The syntax of
the function is

OV_STAT_SEMICOR (b, x, by, )
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where bx is the upper bound on the observations of x, x is a vector containing the obser-
vations of x, by is the upper bound on the observations of y, and y is the vector of y
observations.

A summary of the computations is contained in the illustration that follows. Inter-
estingly, the lower semicorrelation estimate, 0.73313, is greater than the correlation,
0.68415. The fact that both correlations are positive indicates that IBM and the market
tend to move together, however, the fact that the lower semicorrelation is higher means
that the relation is strongest when prices fall. This is type of behavior is not uncommon
in financial markets. A declining market sometimes causes investors to leave a particular
asset class in favor of a safer one (e.g., sells stocks and buy Treasury bills).

B&o - fe =OV_STAT_SEMICOV(D,B4.B63,0,C4:C63)
A | B | C | D |
1 |Monthly holding period returns {2000-2004)
2 | Returns
3 Month IBM L VW oindex
i 20000131 0.04056 -0.03950
i 20000229 -0.08356 0.031580
i 20000331 0.145842 0.05350
E 20041029 0.04677 0.01780
E 20041130 0.05203 0.04530
E 20041231 0.04605 0.03520
B4 |
b5 | OPTWAL
BB | Paramneter estimates function
iSemi-variance 0.00353 0.00131 OV _STAT_SEMIVAR
B8 |Seri-deviation 0,06190 0.03620 OV _STAT_SEMIDEW
ESemi-covariance I 0.00164 .I OV_STAT_SEMICOW
ﬂSemi-correlatiun 0.73313 OV _STAT_SEMICOR

PROBABILITY DISTRIBUTIONS

In the remainder of this appendix, we work with four specific continuous den-
sity functions—the normal, chi-squared, ¢, and F distributions.* Unlike a dis-
crete density function, a continuous random variable can take on any value
from the real number line from —eo to +oo. We use the normal distribution to
develop measures of risk. We use the remaining three distributions to help
develop a framework for understanding the role of measurement error in secu-
rity valuation and risk measurement.

Normal Distribution

The normal distribution is important for a number of reasons. First, it is sym-
metric and bell-shaped, and closely approximates many empirical distributions
such as security returns and cash flows. Second, it is fully described by its mean

*In Chapter 7, we also use the log-normal distribution in describing the distribution of future
security prices.




796 APPENDIX A

and variance, so we need not worry about other properties such as skewness
and kurtosis. Third, if two (or more) random variables are normally distributed
with identical means and variances, any weighted sum of these variables will be
normally distributed.

The normal distribution is a continuous bell-shaped probability distribution
whose density function is given by

e (A.19)

where p1y and oy are the mean and standard deviation of X. In the special case
where iy = 0 and oy = 1, the resulting random variable (usually denoted z) has
a standard normal density function,

2

—27/2
e

n(z) = (A.20)

1
NP
Figure A.3, Panel A plots #(z) as a function of z. Note that all normal distribu-
tions can be be transformed into the standard (or unit) normal distribution
using the relation, z; = (X; — ux)/ox.

To compute the probability that a random drawing from a standard normal
distribution will fall below a level a, we integrate (A.20) over the range from —e
to a, that is,

jl[ 1 2n

—e dz

C 2z (A.21)
N(a)

Pr(z<a)

The usual way in which values of N(a) have been available in matrices like
Tables C.1A and 1B in Appendix C of this book. Appendix C contains all of the
statistical tables that we will need in hypothesis testing and building confidence
intervals. In Table C.1A, for example, N(-2.00) = 0.0228. This means that the
chance that a random drawing from a standard normal distribution will have a
value more than two standard deviation below the mean is 2.28%. Since the
standard normal distribution is symmetric and centered on 0, this also means
that the chance that a random drawing from a standard normal distribution will
have a value more than two standard deviation above the mean is 2.28%. To
check this, we can turn to Table C.1B, where we find that N(2.00) = 0.9772,
that is, the chance that a random drawing from a standard normal distribution
will have a value less than two standard deviations above the mean is 97.72%.
The complement of this value is, of course, 2.28%. The chance that a random
drawing from a standard normal distribution will have a value in the range plus
or minus two standard deviations from the mean is 97.72 — 2.28 = 95.44%.
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FIGURE A.3 Standard normal distribution function and cumulative standard normal density
function.
Panel A. Standard normal
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Panel B. Cumulative standard normal
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In recent years, commonly used statistical software packages have begun to
include functions for evaluating the integral (A.21). Microsoft Excel, for exam-
ple, has an add-in function called NORMSDIST that computes the cumulative
standard normal probability, N(a). The following illustration shows how the
function is called as well as sample values. Note that the values correspond to
the values reported in Tables C.1A and 1B. Figure C.1, Panel B shows the cumu-
lative probability N(a) as a function of a.
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B4 - A =HORMIDIST(&4
A E | C |

1 E Probability

2 -0.55 0.2912

3 0,00 0.5000

4 1.65 0.9505

Closely related to the NORMSDIST function is the NORMSINV function,
which computes the inverse of the cumulative standard normal density function.
Suppose we are interested in determining the level of a that makes the cumula-
tive probability equal to 5%, that is,

Using a = 0.05 in the inverse function shows that NORMSINV/(0.05) = —1.6435.
This imples that the chance of a random drawing from a standard normal distri-
bution producing a value at or below —1.645 standard deviations below the mean
is 5%. Alternatively, it implies that we are 95% confident that a random drawing
from a standard normal distribution will produce a value exceeding —1.645. This
illustration shows sample functions calls and values:

B4 - f =NORMIINV AL
A E | C |

1 | Probability E

2 0,291z -0.55

3 0.5000 0.00

4 0.9505 1.65 1

ILLUSTRATION A.4 Compute maximum possible loss over next month with 95% confidence.

Assume you hold $10 million of IBM’s stock as of December 31, 2004. Based on the returns
that appear in the worksheet A4 in the Excel file, A lllustrations.xls, compute the expected
maximum (or “worst loss”) that we can expect to occur over the next month with 95% con-
fidence. How does the result change if you assume IBM’s returns are normally distributed?

As a risk manager, you will be often placed in situations in which you will need to
quantify the level of risk you face. There are a variety of ways to go about this task, and
we will discuss several in the chapters of the text. The one discussed here is called Value-
at-Risk or simply VAR. What VAR attempts to measure is the maximum dollar loss we
can expect to incur over the given period of time at a particular confidence level.

Empirical Distribution
One way we can go about estimating this quantity is to use the realized empirical distri-
bution, that is, the distribution of returns as they appeared in the recent past. The intu-
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ition is that, unless there is reason to believe otherwise, the next observed return should
be drawn from the same distribution.

The worksheet A4 contains the most recent 60 months of IBM stock returns. Each
return in the series is assumed to have an equal chance of occurring again. Suppose we
order the returns from lowest to highest. With 60 return observations, the number of
intervals between observations is 59. Hence, the probability of falling into a particular
interval is 1/59 or 1.695%. The first few observations in the ordered return series
together with their receptive probabilities are:

Monthly holding period returns (2000-2004)

Month IBM return Cumulative probability
20020930 -0.22645 0
20020430 -0.19462 0.01695
20000929 -0.14773 0.03390
20001031 -0.12444 0.05085
20021231 -0.10838 0.06780
20020131 -0.10805 0.08475

Since no return below =22.645% appeared in the 60-month history, the probability that
a drawing from this distribution will have a value below —22.645% is 0. The probability
that a drawing from this distribution will have a value below —12.444% is 0.05085. The
cumulative probability function for this empirical distribution is:

1.0 .

0.9 T

0.8
07
£0.6 ]
= 0.5
S 0.4 i ‘
=03 .,'

0.2 .

0.1 {

0.0 .
-0.30 -0.20

0.00 0.10
Monthly return

-0.10 0.20 0.30 0.40

The question is, however, what is the critical return below which there is a 5%
chance of occurrence. Looking at the above table, the critical return lies somewhere in
the range between —14.773% and -12.444%. To find exactly where, we interpolate using
the cumulative probabilities as weights, that is,

0.05085 - 0.05000 0.05000-0.03390
-14.773 -12.

0.05085 —0.03390 0.05085 - 0.03390} = ~12:560%

In other words, based on the empirical distribution of IBM’s returns, the chance of expe-
riencing a return of —=12.560% or less over the next month is 5%. Alternatively, we are

5 The fact that no return below —22.645% has been observed does not mean that no returns
will ever fall below that level. This is a weakness of using the empirical distribution approach
to estimating VAR.
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95% confident that the worst loss we will experience over the next month is =12.560%
of the portfolio value or $1,256,045.

As it turns out, another Excel statistical function can compute this critical return
directly. The syntax of the function is

PERCENTILE(array,k)

where array is the vector of monthly returns and k is the probability level. In using this
function, there is no need to arrange the monthly return series in ascending order. In the
event that the critical return falls between observed returns (as it does in this illustra-
tion), the function performs the interpolation automatically. To verify this result, con-
sider the following:

B35 - # =PERCENTILE($E$3.$B$62,3B564
A | B | ¢ | D |
1 IEM J
2 Maonth return
3 20000131 0.04056
4 20000229 -0.058356
5 20000331 0.,14542
5] 20041029 0.04677
61 20041130 0.05203
G2 20041231 0.04605
G3
B4 |Percentile 0.05000
B5 |Critical return &* | -17.580% !
BB |Portfolio value 10,000,000
BY |value-at-risk -1,256,045.00

Normal distribution
A second approach to estimating value-at-risk is to assume that security returns have a
parametric distribution. The most common assumption in this regard is that returns are
normal distributed. Consequently, the only parameters we need to characterize the distri-
bution are the mean and the standard deviation. To find these values, we rely the histori-
cal returns, and then work with the mechanics of the normal distribution to do the rest.
The mean and standard deviation of IBM returns over the sample period were
0.00408 and 0.10378, respectively. From the discussion of the standard normal distribu-
tion earlier, we know that we can use the NORMSINYV function to find the critical value
of a* such that n(a*) = 0.05, as shown in the following figure. From an earlier illustra-
tion, we know that the critical value of a* is —1.645. Thus, the critical return (i.e., the
worst loss over the next month with 95% confidence) is

R* =0.00408 - 1.65(0.10378) = -0.16662

and the VAR under the assumption of normally distributed returns is $1,666,200. This
number exceeds the VAR under the empirical distribution because the empirical distribu-
tion is positively skewed. The normal distribution assigns a greater chance of large nega-
tive returns.
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It is also worth nothing that we need not compute the critical return R * by hand, as we
did above. Excel has add-in functions, NORMDIST and NORMINYV, that allow the user
to prespecify the mean and standard deviation of the normal distribution directly. Thus
where NORMSINYV returns the critical value of a* where the mean and standard deviation
are 0 and 1, respectively, NORMINYV returns the critical value of R* where the mean and
standard deviation are [i; and Oy, respectively. Applying the problem parameters, we get:

B7 - A =NORMINV($E$6,3B52,$E53)
A | B | C
| 1 |Portfolio value 10,000,000
| 2 |Expected return 0.408%
| 3 |Standard deviation 10.3758%
| 4
| 5 |Confidence level 95.00%
B |Probability of lower tail 5,00%
| 7 |critical return /* [ -1e.662% |
| 3 |Walue-at-risk -1,666,229,09

Finally, it is worth noting that VAR is generally defined as the dollar loss relative to
the mean. In some instances, however, users prefer to define VAR as the absolute dollar
loss relative to 0, with no reference to expected value. We can easily accommodate this
convention by setting the mean equal to 0 in the above spreadsheet. The absolute dollar

VAR is about $1.7 million.

B7 - fe =NORMINV($E$6,$B$2,5B55
A B | C
| 1 |Portfolio value 10,000,000
| 2 |Expected return 0.000%
| 3 |Standard deviation 10.378%
4 |
| 5 |Confidence level 95.00%
B |Probability of lower tail 5.00%
ECriticaI return &* -17.070% |
| 8 |WValue-at-risk -1,707,029.09
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Chi-Square Distribution

The chi-square distribution plays a key role in many statistical tests. One impor-
tant application is in the context of answering the question: “Are two sets of data
drawn from the same distribution function?” In Illustration A.4, for example,
can we test whether the sample of IBM stock returns are drawn from a normal
distribution? Below we define the chi-square distribution and its probabilities,
and then apply it in tests for distributional differences.

Formally defined, a variable that is the sum of the squares of # independent
drawings from a standard normal distribution, that is,

2

1= X+ X+ + X (A.22)
is said to have a the chi-square distribution with 7 degrees of freedom. The
shape of the distribution changes with the number of degrees of freedom, as is
shown in Figure A.4. With few degrees of freedom, the distribution is highly
positively skewed. As the number of degrees of freedom grows large, the distri-
bution becomes more and more symmetric.

Table A.4 reports the probability that the sum of squared of #» random stan-
dard normal variables will be greater than the critical value )(i . To interpret the
table, consider the case where the number of degrees of freedom is 10 and the
probability level o is 0.05. The critical y* value is 18.31. This means that the
chance of observing a sample 7, value exceeding 18 31 is less than 5%, or,
alternatively, we are 95% confident that the sample )(10 will be less than 18.31.
Figure A.S5 illustrates. The darkened tail to the right contains 5% of the area
under the y? distribution. The lower bound of this tail is the critical value 18.31.
It is also worth noting that Excel has a statistical function that computes the
critical value of )(i. Its syntax is

FAGURE A4 Chi-square (x?) distribution with various degrees of freedom.

df=35
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FIGURE A.5 Critical chi-square value at 5% probability level and 10 degrees of freedom.

0 18.31 32

CHINV(Probability, Deg_freedom)

where Probability is the chosen significance level, and Deg_freedom is the num-
ber of degrees of freedom. CHINV(0.05,10) = 18.31.

Tests for Normality One particularly important application of the chi-square dis-
tribution is in tests of normality. One simple way of distinguishing between the
distributions of two samples is to compute the statistic,

" (E-f)
%2 = Z_f__

i=1

(A.23)

where 7 is the number of bins, F; is the number of events observed in the ith bin,
and f; is the expected number under some known distribution such as the nor-
mal.® In this particular case, the terms in (A.23) are not individually normal,
however, if either the number of bins is large or the number of events in each bin
is large, the chi-square probability function is a good approximation to the dis-
tribution of (A.23). To test the null hypothesis that the sampling distribution is
normal, we compute the test statistic (A.23) and compare the value against the
critical values reported in Table C.2 in Appendix C.

This is the first of many hypothesis tests that we will perform in this appen-
dix. It is important to note that, before any testing is done, we must preset the
desired level of significance of our test. The choice of the level of significance,
denoted by «, represents the probability of rejecting the null hypothesis when
the null hypothesis is, in fact, true. It is our choice, however, conventional levels
in statistical analyses are 5% or 1%.

® As a practical matter, any term in (A.19) where #; = 0 is ignored.
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ILLUSTRATION A.® Test for normality of stock market returns.

The worksheet AS in the Excel file, A Illustrations.xls, contains 60 months of returns for a
value-weighted stock market index over the period January 2000 through December 2004.
Test the null hypothesis that these returns were drawn from a normal distribution.

The first step in performing such a test using binned data is to create the binned
data. In creating binned data, it is useful to begin with an understanding of the distribu-
tions summary statistics. For the 60-monthly market index returns:

Parameter Estimate  Excel Function

Mean 0.00018 AVERAGE
Standard deviation 0.04924 STDEV
Minimum -0.10250 MIN
Maximum 0.08390 MAX

The range of monthly returns is from -10.250% to 8.390%.

The choice of bins is arbitrary. Based upon the range of observations, we will define
the bins to be in 2.5% increments and the range to be from -12.5% to 12.5%. With the
bins defined, we then count the number of observations in each bin, that is, identify the
Frs,i=1,...,11 for use in (A.23).

Next we need to identify the number of observations expected in each bin assuming
the monthly returns are normally distributed. The first bin includes all monthly return
observations below —=12.5%. Under a normal distribution with mean 0.018% and stan-
dard deviation 4.924%, the probability of drawing a return below -12.5% is 0.0055.
With 60 total return observations, the expected number to fall in this first category is fq =
0.330. Note that this value need not be integer. The second bin includes all monthly
return observations between —-12.5% and -10.0%. Under a normal distribution with
mean .018% and standard deviation 4.924%, the probability of drawing a return
between —12.5% and -10.0% is 0.0154. With 60 total return observations, the expected
number to fall in this second category is f, = 0.926. The remaining cells in the column are
computed in the same manner. The frequencies of observed versus expected numbers of
observations in each bin is as follows:

18
16
14

—_
\S)

—_
(=]

O Market
m Normal

Frequency

S NN A~ N

-0.125
-0.100
-0.075
-0.050
-0.025
0.000
0.025
0.050
0.075
0.100
0.125

Monthly return

Finally, we compute the individual terms in (A.23) and sum. The computed chi-
square value is 8.385. Comparing this value to the critical values reported for 11 degrees
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of freedom in Table C.2, we find that it lies somewhere between the 10 and 90 percentile
values. In other words, we cannot reject the hypothesis that the value-weighted market
returns were drawn from a normal distribution. Excel also has a function for computing
the chi-square probability. Its syntax is

CHIDIST (x, deg_freedom)

where x is the computed chi-square value and deg_freedom is the number of degrees of
freedom. In the current illustration, CHIDIST(8.385,11) = 0.6784.

Before proceeding further, it is important to digress and discuss the concept
of a p-value, which we have just applied in Illustration A.5 (i.e., the CHIDIST
function computes the p-value for a y* distribution). As we have noted, the stan-
dard procedure for reporting the statistical significance of results of hypothesis
testing is to compare the test statistic to the critical value determined at the 5%
or 1% significance level. In recent years, however, it has become more common
to report p-values (probability values). A p-value describes the exact significance
level associated with a particular test statistic. Thus, a p-value of 0.6784 indi-
cates that a coefficient is statistically significant at the 0.6784 level. In the con-
text of a chi-square test with 11 degrees of freedom, this means that 67.84% of
the y* distribution lies above 8.385. For purposes of hypothesis testing, we com-
pare the p-value with our demanded level of significance, say, o = 0.05. Since
0.6784 > 0.05, we cannot reject the null hypothesis that the market return dis-
tribution is normal. Rejection requires that the p-value is less than o.

The test statistic (A.23) is useful in demonstrating the intuition underlying
why a chi-square test is useful in distinguishing whether there are meaningful
differences between the underlying distributions of two samples of data. In the
practice, however, we frequently have data that are drawn from continuous dis-
tributions. Arbitrarily grouping data into bins involves loss of information. In
addition, the selection of bins is arbitrary. For this reason, a considerable
amount of energy has been devoted to develop alternative statistics for testing
whether a particular sample is drawn from a normal distribution. One well-
known test for normality is the Jarque-Bera (1980, 1987) statistic:

n_n ~
JB = Zl¥i+1/4] (A24)

where 7 is the number of sample observations and 7, and ¥, are the sample
skewness (A.17) and excess kurtosis (A.18), respectively. The JB statistic follows a
chi-square distribution with 2 degrees of freedom. If the B statistic is greater than
the critical value of the chi-square, we reject the null hypothesis of normality.

ILLUSTRATION A.6 Jarque-Bera test for normality of stock market returns.

The worksheet A6 of the Excel file, A lllustrations.xls, contains 60 months of returns for
a value-weighted stock market index over the period January 2000 through December
2004. Test the null bypothesis that the returns were drawn from a normal distribution
using the Jarque-Bera test statisitic.




806 APPENDIX A

To compute the Jarque-Bera test statistic, we need estimates of the skewness and excess
kurtosis of the return distribution. Using the appropriate Excel functions for computing
(A.17) and (A.18), we find y; = —0.31475 and y, = —0.58410 . Thus, the JB statistic is

60 2 2
JB = z(— 0.314757 +(-0.58410)"/4) = 1.8436

At 2 degrees of freedom, the sample ¥? lies in the range between the 10 and 90 percentiles,
which means we cannot reject the null hypothesis that the market returns are normally dis-
tributed. This conclusion can be confirmed using the Excel function, CHIDIST(1.8436,2)
=0.3978.

F-Distribution

The Student t-distribution’ or, simply, t-distribution also plays a key role in sta-
tistical analyses. We know from the discussion thus far in this appendix that, in
general, we are interested in knowing the parameters of a population but we can
neither (a) observe the parameters directly nor (b) observe all of the elements in
the distribution. Consequently, we rely upon a sample of observations and sta-
tistical analysis to infer the population parameters. The sample mean (A-10), for
example, is our “best guess” of the population mean, however, it is a guess. The
t-distribution helps us quantify the accuracy with which the sample mean esti-
mates the population (or “true”) mean.
The random variable,

z
Z/N

;= (A.25)

5

is said to have a #-distribution with N degrees of freedom if (a) z is normally distrib-
uted with mean 0 and variance 1, (b) Z is distributed as chi-square with N degrees
of freedom, and (¢) X and Z are independent. Like the standard normal distribu-
tion, the ¢-distribution is symmetric. Unlike the normal distribution, the #-distribu-
tion has fat tails when the number of degrees of freedom is small. Figure A.6
illustrates. Although both are centered at 0, the #-distribution has greater variance.

Table C.3 in Appendix C contains percentiles of the #-distribution. The panel
heading, Probability, is probability that a positive ¢ value will exceed each num-
ber in the table in absolute value and is therefore appropriate in one-tailed test.
See Figure A.7, Panel A. For a one-tailed test with 10 degrees of freedom and a
significance level of a = 0.05, the critical z-value #,is 1.812, that is, the probabil-
ity that the #-value exceeds 1.812 in absolute value is 5%. For a two-tailed test
with 10 degrees of freedom and a significance level of o = 0.05, the critical #-
value t,, = 2.228, that is, the probability that the ¢-value is below -2.228 or
above 2.228 is 5%—2.5% in each tail. See Figure A.7, Panel B.

7 The t-distribution was derived by William Sealey Gosset in 1908 while he was working at he
Guinness brewery in Dublin. He was not allowed to publish under his own name, so the paper
was written under the pseudonym “Student.” See Student (1908) and http://en.wikipedia.org/
wiki/Student%27s_t-distribution.
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FIGURE A.6 Student ¢-distribution versus normal distribution.

|7Normal distribution t distribution |

FIGURE A.7  Critical values #-distribution at 10 degrees of freedom for one-tailed and two-
tailed tests at the 5% level.
Panel A. One-tailed test.

) 0 1.812 6

Panel B. Two-tailed test.

-6 -2.228 0 -2.228 6
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To understand how (A.21) helps us, note that the variance of the sample mean is

R 1< 1 &
Va?’(‘ux) = Vﬂr(; Z Xz] = ;i z Var(Xi)
=1 i=1 (A.26)
1 5, 1
= — Ov = -0
nZ” X = 50x

where 7 is the sample size. The standard deviation of the sample mean is therefore

o, = oy/n (A.27)

X

Recall that any linear combination of normal distributions is a normal distribu-
tion. If X is normally distributed with mean py and standard deviation oy, then

x =ty B fx =y

(A.28)

is normally distributed with mean 0 and standard deviation 1. We use (A.28) in
the numerator of (A.25). >

Focusing now on the denominator of (A.25), we know that (n—-1)6y/ 0y
follows a chi-square distribution with # — 1 degrees of freedom. Combining
results in (A.25) and simplifying, we find that

fx = iy
&/ fx—Hx  fx—p
t = Ox /I =X [X= XX (A.29)
A2 O/ AIn eh
_1 X u
M/(n_l X

)

2
Ox

has a z-distribution with 7 degrees of freedom. Consequently, we can test
whether the mean of a random variable is equal to any particular number using
the rightmost term in (A.29), even when the variance of the random variable is
unknown. The denominator in the expression, s, , is called the standard error
of the estimate. Note that the standard error becomes small as the sample size
grows large. The intuition for this result is that, the more information you
gather in estimating the mean, the more reliable your estimate will be.

Test for Zero Mean Perhaps the most common use of the #-statistic is in testing the
null hypothesis that the mean of the population is different from zero. Such a
test is a special case of (A.29), that is,
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N

p = =X (A.30)
Hx

(%Y
>

The (1 — )% confidence interval for the mean of the population is
Hx < [lx + tO(, dfs.[lx (A.31)

where 2, 4 is the critical z-value corresponding to df degrees of freedom and a
desired level of probability o (or desired level of confidence, 1 - o).

ILLUSTRATION A.7 Test hypothesis mean is equal to 0.

The worksheet A7 of the Excel file, A Illustrations.xls, contains 60 months of returns for
IBM during the period January 2000 through December 2004. Test the null hypothesis
that these mean monthly return equals 0 at the 5% probability level. Also, compute the
95% confidence interval for the mean monthly return for IBM.

The first test is to compute the mean and standard deviation of the sample of 60
return observations: jiy, = 0.00408 and oy = 0.10378 . Next we compute the standard
error of [iy:

s, = Gy/An = 0.10378/./60 = 0.01340

X

Finally, compute the #-statistic: ¢ = 0.00408/0.01340 = 0.305. The OPTVAL library contains
a function for computing a ¢-test of the mean from a pre-specified constant. Its syntax is

OV_STAT_TCNST (x, cnst, out)

where x is the vector of sample observations, cnst is the prespecified constant, and out is
an indicator variable instructing the output to be aligned horizontally (“h” or “H”) or
vertically (“v” or “V”). The output of the function (the #-ratio and the number of degrees
of freedom) is written to two adjacent cells, and both must be highlighted when entering
the input information. Then press Shift, Ctrl, and Enter simultaneously.

With 59 degrees of freedom and a 5% probability level, the critical ¢-value is about
2.00. (The critical #-value reported in Table C.3 is 2.000 at 60 degrees of freedom. No
value is reported for 59 degrees of freedom). Since the absolute value of 0.303 is less than
2.00, we do not reject the hypothesis that the mean monthly return for IBM is 0. Note
that Excel has an add-in function that allows a more accurate value of the critical value.
The syntax of the function is

TINV(probability, deg_freedom)

where probability is the desired level of probability in a two-tailed test and deg_freedom
is the number of degrees of freedom. TINV(0.05, 59) = 2.001, which is very close to our
approximate value obtained from Table C.3. Finally, we can use the computed t-ratio
directly in the Excel add-in,

TDIST (x, deg_freedom, tails)

where x is the #-ratio, deg_freedom is the number of degrees of freedom, and zails is 1 or 2,
depending upon whether you want to perform a one- or two-tailed test. TDIST(0.30453,
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59,2) =0.762, which means there is a 76.2% probability that the true difference between
the population mean and 0 lies outside the range —0.30453 and 0.30453.

B7a - B =TDIST(BT73,E74,2)
A | B | ¢ |
|1 IBM
2 Month return
i 20000131 0.04056
i 20000229 -0.08356
i 20000331 0.14842
E 20041029 0.04677
i 20041130 0.05203
E 20041231 0.04605
| B3 |
| B4 | Parameter
| 65 | estimate
| BB |Mo. of observations &0
| B7 |Mean 0.00408
| B8 | Standard deviation 0,10375
| B9 |standard error 0.01340
| 70 |
71 |Hyoothesis test
ﬁt-ratio {by hand) 0.30453
| 73 [t -ratio (OPTVAL) 0.30453
74 |df 59
ﬁlnverse of ¢ Z.001
76 |2-tailed probability I 0.762 _I

The 95% confidence interval for the mean of IBM’s monthly returns is closely
related to the test of the null hypothesis that the mean return equals zero. Substituting
the problem parameters into (A.27), we find that

Ux <0.00408 £2.001(0.01340) = (-0.02273, 0.03089)

In other words, based on the 60 months of sample information, we are 95% confident that
the “true” mean monthly return of IBM is somewhere between -2.273% and 3.089 %—not a
high degree of precision indeed. Since 0% is contained within the confidence interval, the null
hypothesis that the mean return is 0% cannot be rejected at the 5% level of probability. Sim-
ilarly, the null hypothesis that the mean monthly return of IBM is 3% cannot be rejected
since, it too, falls within the 95% confidence interval.

Test for Equivalence of Means Tests of the equivalence of two means come in two
forms. The distinction is driven by the decision about whether it is reasonable to

assume the two distributions have the same variance. If two distributions are
thought to have the same variance, the appropriate test statistic is

p == (A.32)

where
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~2 2
Oy(ny—1)+0y(ny—-1)( 1 1

&p = [_ + _] (A.33)

Ny +ny—2 ny Ny

We evaluate the significance of this #-value for the Student’s distribution with
ny + ny — 2 degrees of freedom. Note that, if Y is a constant 0, the expression
for the standard error becomes

which is identical to the standard error in (A.30).

Often there is no reason to believe that the variances of a and b are equal. In
this instance, the t-test for the difference in means must be modified. The rele-
vant z-statistic for unequal variance is

b xTHY (A.34)

[Ox/ny+ Oy/ny

where this statistic is approximately as Student’s ¢t with a number of degrees of
freedom equal to

(&2 /ny+ s ny)
df = XXV (A.35)

) 2 2 2
(Oy/1y) . (Gx/ 1)

ny—1 ny—1

Note that expression for determining the number of degrees of freedom (A.35)
is, in general, not an integer—there is no reason it has to be.

ILLUSTRATION A.8 Test hypothesis difference in means is 0.

The worksheet A8 of the Excel file, A Illustrations.xls, contains 60 months of returns for
IBM during the period January 2000 through December 2004. Test the null hypothesis
that the mean during the first 30 months is no different than the mean return in the sec-
ond 60 months. First, assume the variances of the two samples are equal, and then
assume the variances are different.

After computing the mean and variance of each sample, we can perform the compu-
tations by hand using equations (A.32) through (A.35). But both computations can also
be performed using the OPTVAL function

OV_STAT_TMEANS(x, y, ind, out)
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where x and y are the vectors of sample observations for the two samples, ind is an indica-
tor variable instructing the function to assume equal variances (“y” or “Y”) or unequal
variances (“n” or “N”), and out is an indicator variable instructing the function to return
the output horizontally (“h” or “H”) or vertically (“v” or “V?”). Again, the output is the ¢-
ratio and the number of degrees of freedom and so two adjacent cells must be highlighted
when the function is called. The results are shown below.

The results indicate that there is little reason to believe that (1) the mean return for
IBM is different in the two sample periods; and (2) different variances have an important
effect on the testing procedure. Under the assumption that the variances are the same across
samples, the #-ratio for testing the null hypothesis that the means are the same is —0.804.
Since the critical value of the z-distribution corresponding to a two-tailed test and 58
degrees of freedom is #( o5/2 53 = 2.002. Since the absolute value of the #-ratio is less than
2.002, we cannot reject the hypothesis that the means are the same. Alternatively, since
the p-value, 0.4235, is greater than the demanded level of significance, 0.05, the null can-
not be rejected.

D43 - foe {=0OV_3STAT_TMEANZB4B33,D4D33,"N","V"}
A | B | C | D |

1 Sample 1 {30 observations) Sample 2 {30 observations)
| 2 | IBM y IBM y
3 Month return Month return
L 20000131 0.04056 20020731 -0.02222
i 20000229 -0.08356 20020830 0.07287
i 20000331 0.14842 20020930 -0.22645
E 20020430 -0.19462 20041029 0.04677
i 20020531 -0.03773 20041130 0.05203
i 20020628 -0,10503 20041231 0.04605
E
i Parameter Parameter
| 36 | _ estimate | estimate
| 37 Mo, of obs, 30 30
i Mean -0.00673 0.01489
| 39 |Standard deviation 0.11646 0.09006
| 40
i Hypothesis test Same variances Different variances
42 |#-ratio {by hand} -0.304 -0.260
Et-ratio (OPTWAL) -0.804 -0.260
| 44 |df 58.000 54.548
| 45 |tiny 2.002 2,008
| 46 | 2-tailed probability 0.425 0.796

Test for Equivalence of Means in a Paired Sample Paired comparisons in finance-related
problems are not infrequent. Suppose, for example, two stocks have done par-
ticularly well during a specified period of time, but that, during the same period,
the stock market did particularly well. Is the performance of the two stocks dif-
ferent in a meaningful way?

To answer this question, we can, again, rely on a #-test. The #-ratio is

fix — fty
t = ——

Op

(A.36)

and is evaluated with degrees of freedom. The definition of the denominator is
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’\2 A2 2,\ 0.5
. | 9xt+Oy—<20xy
H= | ———— 2%

1 (A.37)

that is, the standard error of the difference in returns of X and Y. A little reflec-
tion will tell you why this is appropriate. Since both a and b may co-vary with
some factor, we need to abstract from that factor. Thus, we reduce the variance
in the numerator of (A.37) by the amount of the covariation in determining
whether the difference is indeed significant.

ILLUSTRATION A.9 Test hypothesis difference between means in paired sample.

The worksheet A9 of the Excel file, A Illustrations.xls, contains 60 months of returns for
IBM and GM during the sample period January 2000 through December 2004. Test the
null hypothesis that the mean of IBM’s returns is different from the mean of GM’s returns.

Summary statistics for the return series are shown in the table below. Since individ-
ual stock returns tend to covary with the market, they tend to covary with each other. To
check if this is the case, we can compute the correlation between the return series. The
estimated correlation coefficient is 0.294, which indicates that, when testing for a differ-
ence between the mean returns of the two stocks, it is appropriate to use a test statistic
that accounts for the contemporaneous relation between the series.

With the information provided in the summary table, we can compute the ¢-ratio
using (A.36) and (A.37). The #-ratio is 0.300. Using a two-tailed test with 59 degrees of
freedom and o = 0.05, we cannot reject the hypothesis that the mean returns of IBM and
GM are the same. The OPTVAL library contains a function for computing the t-ratio
directly without us having to perform the intermediate computations. Its syntax is

OV_STAT_TPMEANS(x, v, out)

where x and y are the vectors containing the pairs of observations vectors, and out is an indica-
tor variable instructing the function to return the output horizontally (“h” or “H”) or vertically

(“ »

v” or “V”) . The output of the function is the #-ratio and the number of degrees of freedom.

Parameter Estimates

No. of obs. 60 60
Mean 0.00408 -0.00078
Standard deviation 0.10378 0.10721
Variance 0.01077 0.01149
Covariance 0.00321

Correlation Matrix IBM GM
IBM 1

GM 0.294 1
Hypothesis Test

t-ratio 0.300

df 59

tinv 2.001

2-tailed probability 0.765
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Type | and Type Il Errors and the Power of a Test

With the rules for conducting hypothesis tests and building confidence intervals in
hand, we are in a position to discuss two more subtle statistical issues. The first is
Type I and Type Il errors. Recall that, in the illustrations of this appendix, we pre-
set the desired level of significance of the test before the test was performed. The
choice of the level of significance o (usually 5% or 1%) represents the probability
of rejecting the null hypothesis when the null hypothesis is, in fact, true. This type
of mistake is called Type I error. Type II error, on the other hand, refers to the
probability that the null hypothesis is not refuted when it should be.

To more clearly distinguish between the two types of errors, consider chang-
ing the level of significance in a test from 5% to 1%. Obviously, the probability
of incorrectly rejecting the null hypothesis (Type I error) falls from 5% to 1%.
At the same time, the probability of a Type II error increases. The lower the
value of «, the wider the range of outcomes within the confidence interval, and
the greater our inability to distinguish between values contained within the inter-
val. If the true population parameter is 3 and the confidence interval is (-5,+5), a
significance test will not reject the null hypothesis that the parameter is 0, even
though we know that it is not. Thus, in selecting the level of significance, we
face a trade off. As we lower the probability of Type I error, we increase the
probability of Type II error. The choice between the two types of errors depends
on the particular problem. In finance applications, we usually choose a low level
of significance and, hence, a low probability of Type I error.

Closely related to Type I and Type II errors is the concept of the power of a
test. Suppose that we fail to reject the hypothesis that the population parameter
is 0. Consider the possible reasons for this “failure.” One obvious reason is that
the null hypothesis is true. Another possibility is that the null hypothesis is false,
but the particular data set used for the test happens to be consistent with the
null. The statistical concept that helps us evaluate the importance of the second
explanation is the power of a test. Power is the probability of rejecting the null
hypothesis when it is in fact false and is, therefore, equal to one minus the prob-
ability of a Type Il error (i.e., one minus the probability that one will accept the
null hypothesis as true when it is in fact false). Note that power depends not
only on the size of the effect that has been measured, but also on the number of
observations in the sample. Holding other factors constant, the larger the effect
and the larger the sample size, the more powerful the test. When a statistical
analysis with relatively low power fails to show a significant p-value, we should
not be hasty in concluding that there is no effect. We must allow for the fact that
the study may be inconclusive because the data set is not rich enough sufficient
to allow us to distinguish between the null and alternative hypotheses.

F Distribution

Formally defined, (X/n)/(Y/n,) is distributed according to an F distribution
with 7y and n, degrees of freedom if X and Y are independent and distributed as
chi square with 7y and n, degrees of freedom, respectively. The F-distribution is
skewed to the right, as shown in Figure A.8. The exact shape will depend on the
numbers of degrees of freedom in the numerator and the denominator. The fig-
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FIGURE A.8 F-distribution with (5,10) and (10,20) degrees of freedom.

df(10,20)
v

ure displays an F-distribution with 5 and 10 degrees of freedom and another
with 10 and 20 degrees of freedom. The latter distribution is less skewed.

Test for Equivalence of Variances The F-distribution is commonly used in tests of the
equality of two variances. The F-statistic is always tabulated with the larger esti-
mate of variance in the numerator and the smaller estimate in the denominator.
Thus assuming

2 A2
Oy > Oy

the F-statistic is

F=22 (A.38)

with 2y — 1 and ny — 1 degrees of freedom. The resulting ratio is always greater
than 1, and provides information about the upper tail of the F-distribution. The
greater the difference between the two variances, the greater the F-statistic.
Thus, a large value of F implies that it is unlikely that the two error variances
are equal. Tables C.4A and C.4B summarize critical F-values under 5% and 1%
probability levels. Note that the tables are arranged with the columns represent-
ing different numbers of degrees of freedom in the numerator and the rows rep-
resenting different numbers of degrees of freedom in the denominator. To
illustrate applying the tables, assume the number of degrees of freedom in the
numerator and the denominator is 10 and that we preset the level of significance
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to o = 0.05. The critical F-value in Table C.4A is 2.98, which means that if the
F-statistic from the test exceeds 2.98, we reject the null hypothesis that the two
variances are equal at the 0.05 probability level. If the F-statistic exceeds 4.85,
we also reject the null hypothesis that the two variances are equal at the 0.01

probability level (see Table C.4B).

ILLUSTRATION A.10 Test for difference in variances of stock return series.

The worksheet A10 of the Excel file, A Illustrations.xls, contains 60 months of returns
for IBM and the market portfolio during the sample period January 2000 through
December 2004. Test the null hypothesis that the variance of IBM’s returns is different
from the variance of the returns of the market at the .05 probability level.

Summary statistics for the return series are shown in the table below. The variance of
IBM returns is considerably larger than the variance of the market returns, so we place
IBM in the numerator. The F-statistic is

0.01077/(60 - 1)

= L - 44432
0.00242/(60 — 1)

With o= 0.05 and 59 degrees of freedom in both the numerator and the denominator, the
critical value Fg 5 59 59 is 1.5400. The closest value in Table C.4A is Fy o5 60,60 = 1.53.
The exact value was obtained using the Excel function

FINV(probability,deg_freedom1,deg_freedom?2)

where probability is the preset significance level, and deg_freedom1 and deg_freedom2
are the number of degrees of freedom in the numerator and denominator, respectively.
FINV(0.05,59,59) = 1.5400. Finally, Excel also has a function for computing the p-value
of an F-statistic directly. Its syntax is

FDIST (x,deg_freedom1,deg_freedom?2)

where x is the sample F-statistic. As it turns out, FDIST(4.4432,59,59) = 0.0000. The
null hypothesis that the variances of the two series are equal is soundly rejected.

Month IBM Return Market Return
20000131 0.04056 -0.03977
20000229 -0.08356 0.03178
20000331 0.14842 0.05353
20041029 0.04677 0.01780
20041130 0.05203 0.04826
20041231 0.04605 0.03518

Parameter Estimates

No. of obs. 60 60
Mean 0.00408 0.00018
Standard deviation 0.10378 0.04924

Variance 0.01077 0.00242
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Hypothesis Test

F-statistic (by hand) 4.4432

df(num,den) 59 59
finv 1.5400

Probability 0.0000

Test for Autocorrelation

In the study of finance, another key property of the returns (besides normality)
is independence—past returns carry no information regarding current and
future returns. The usual way of testing for whether returns are independently
distributed is by calculating the sample autocorrelation function

T-k
2 (Xt_)?)(XHk_)?)
P = E (A.39)
Y (x,-X)
t=1

where T is the number of observations in the time series. If the returns are inde-
pendent, the lag k autocorrelation should be zero. To test whether a particular
value of the autocorrelation function py, is equal to zero, we use a Bartlett test.
Under the null hypothesis that the time series is white noise, the sample autocor-
relation coefficients are approximately normally distributed with mean zero and
standard deviation 1/./T. For the S&P 500 monthly returns in our sample, the
autocorrelation function is:

Lag 1 2 3 4 5

Autocorrelation -0.0785 —-0.0409 0.0314 -0.0570 -0.0180
Standard deviation 0.0783 0.0783 0.0783 0.0783 0.0783

It is computed using the OPTVAL function

OV_STAT_AUTOCORREL(k, x, out)

where k is the maximum number of lags, x is the time series, and out is an indi-
cator variable set equal to O if the output array is to be returned horizontally
and 1 if the array is to be returned vertically. With 163 monthly returns in the
time series, the standard error is 1/./163 = 0.07833. In other words, the abso-
lute magnitude of an autocorrelation coefficient would have to be greater than
0.07833 x 2 = 0.15665 in order to sure that the autocorrelation coefficient is
not zero with 95% confidence. The sample autocorrelation function indicates
that none of the true coefficients are different from zero. Box and Pierce devel-
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oped a Q statistic for testing the joint hypothesis that all the autocorrelation
coefficients are zero, that is,

0=TY p (A.40)

where Q is (approximately) distributed as chi-square with K degrees of freedom.
The OPTVAL function

OV_STAT_BOX_PIERCE (k, x, out)

computes the chi-squared statistics for different values of k. The results for the
S&P 500 monthly returns are

Lag 1 2 3 4 5
Autocorrelation -0.0785 -0.0409 0.0314 -0.0570 -0.0180
Standard deviation 0.0783 0.0783 0.0783 0.0783 0.0783
Box-Pierce Q statistic 1.0051 1.2778 1.4386 1.9675 2.0205
Critical chi-square level 2.7055 4.6052 6.2514 7.7794 9.2364

The levels of the Q-statistic are well below their critical levels at the 90% confi-
dence level, so we cannot reject the hypothesis that all the true autocorrelation
coefficients are equal to zero.

Central Limit Theorem

Earlier we stated that the parameters of the distribution are certain if the entire
population is known (i.e., # = N). Intuitively, therefore, this must mean that, as
the sample size grows large, the estimate of the mean should converge on the
population mean. This intuition, which holds for probability distributions with
finite means, can be summed up formally as:

The centra% limit theorem. If the random variable X has mean py and
variance Oy, thgn the sampling dist.ribution of [ty becomes approxi-
mately normal with mean py and variance o%/# as n increases.

In other words, for sufficiently large sample sizes, we can rely on the normality
assumption, which greatly simplifies statistical tests. The central limit theorem
will prove useful in assessing the performance of option trading strategies in
Chapter 10.
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