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Assumptions and Interest Rate
Mechanics

his book deals with risk management using derivatives. Effective risk man-

agement, however, requires accurate risk measurement, and accurate risk
measurement requires a thorough understanding of valuation. The purpose of
this chapter and the next is to review the fundamental principles of security val-
uation. This chapter focuses on the key assumptions that underlie security valu-
ation models and reviews the use of interest rate mechanics in moving expected
future cash flows through time. The next chapter focuses on estimating appro-
priate discount rates for securities given their risk characteristics.

The outline of this chapter is as follows. The first section presents the set of
assumptions that underlie our valuation framework. The second section deals
with the interest rate mechanics that allow us to move cash flows through time.
The third and fourth sections then apply the assumptions and interest rate
mechanics to value fixed income securities—discount bonds and coupon bonds.
The fifth section focuses on the relation between interest rates and term to matu-
rity as well as the meaning and computation of forward rates of interest. The
sixth section describes common stock valuation. The chapter concludes with a
summary.

UNDERLYING ASSUMPTIONS

Building valuation models requires making assumptions. Two assumptions that
lay the foundation for security valuation are the absence of costless arbitrage
opportunities and frictionless markets. The first assumption is critical; the second
is made largely for expositional convenience.

Absence of Costless Arbitrage Opportunities

The absence of costless arbitrage opportunities is driven by a basic tenet of
human behavior—individuals prefer more wealth to less, holding other factors
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constant. “Greed is good!”! If two perfect substitutes are traded in the market-
place and they do not have the same price, someone will immediately step in to
earn a risk-free profit by simultaneously buying the cheaper asset and selling the
more expensive one. Because the asset is both bought and sold simultaneously
(albeit in different markets), there is no risk. This is the single key element of an
arbitrage strategy.” Because this particular arbitrage involves no cash outlay, it
is a costless arbitrage. The person enacting the strategy is called an arbitrageur.
Because the prices of perfect substitutes must be the same in equilibrium, this
principle is also known as the law of one price.

Arbitrageurs are at work in all markets where perfect substitutes are traded
simultaneously. The shares of IBM, for example, trade on many exchanges in
the U.S., not to mention other countries worldwide. Suppose that we see that
IBM’s stock has a bid price of $120.75 per share on the New York Stock
Exchange (NYSE) and an ask price of $120.25 per share on the Pacific Coast
Exchange (PCE). We can earn a costless arbitrage profit of $0.50 per share by
simultaneously selling IBM on the NYSE and buying it on the PCE. Do not
expect to find such opportunities, however. Market makers on the various
exchanges continuously monitor markets for such anomalies, and act immedi-
ately upon finding any pricing distortion that exceeds trading costs.

Frictionless Markets

Frictionless markets is an assumption made more for convenience than necessity.
Invoking it permits sharper focus on the economics of the situation at hand, absent
the effects of market idiosyncrasies. Once the economic intuition is developed, the
effects of trading costs, taxes, divergent borrowing and lending rates, and the like
can be added straightforwardly. For now, however, we wipe the slate clean.

The assumption of frictionless markets requires:

B No trading costs.

B No taxes.

B Unlimited borrowing and lending at the risk-free rate of interest.
B Freedom to sell (short) with full use of any proceeds.

B Can trade at any time.

No Trading Costs Trading costs are costs associated with executing a transaction.
These include (1) commissions paid to brokers as well as (2) bid/ask spreads and
(3) market impact costs paid to market makers. The effects of trading costs can
modeled quite easily. Take, for example, the IBM arbitrage illustration provided
earlier in the chapter. Recall that we implicitly incorporated the effect of the bid/

! This is from a speech by Gordon Gekko to Teldar Paper Shareholders in the 1987 movie,
Wall Street, directed by Oliver Stone. See www.americanrhetoric.com/Movie Speeches/mov-
iespeechwallstreet.html.

2 The term, arbitrage, is frequently misapplied. Risk arbitrage, for example, refers to a trading
strategy in which the shares of a firm rumored to be on the verge of being acquired are pur-
chased and the shares of the acquiring firm are simultaneously purchased. Since the merger
may or may not take place, this activity is not arbitrage.
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ask spread by comparing the bid price (the price at which we can sell immedi-
ately) on the NYSE with the ask price (i.e., the price at which we can buy immedi-
ately) on the PCE. Suppose that, in addition to the market maker’s spread, our
broker charges a commission rate of $0.10 per share. We can still earn a costless
arbitrage profit of $0.40. Beyond commissions and spreads, we may face market
impact costs if you attempt to trade in large quantities. Since exchanges are
obliged to have a minimum market depth at the prevailing market quotes, some
amount of profitable arbitrage can be earned. Going beyond that posted levels of
depth requires estimating the price elasticity of the stock. Thus, in general, we can
account for the effects of trading costs in a logical and coherent fashion because
they are known or can be estimated reasonably precisely.

No Taxes Taxes affects valuation in two ways: first, it reduces the amount of the
gain (loss), and, second, it may affect the gain (loss) differentially depending
upon whether it comes in the form of ordinary income or capital gain. In some
models, the first consideration is unimportant. In the IBM arbitrage illustration,
the after-trading cost gain was $0.40. Assuming the marginal tax rate is less
than 100%, the arbitrage opportunity still exists. The second consideration can
have more far reaching consequences, however. Consider two identical firms,
one that pays a generous cash dividend each quarter (and raises capital for new
investment by issuing new securities) and another that pays no dividends (and
uses the cash for new investment). If our long-term capital gains tax rate is less
than our ordinary income tax rate, we will prefer to hold the shares of the sec-
ond firm, holding other factors constant. Taxes, per se, do not make the security
valuation problem more complicated, just more tedious. Because the marginal
tax rates on the different forms of income are known or can be estimated, incor-
porating them directly in the valuation problem is straightforward.

Unlimited Borrowing and Lending at the Risk-Free Interest Rate This assumption has two
important facets. First, it says that the borrowing and lending rates are equal.
Obviously, this is not the case. A bank has a margin between the rate it pays on
demand deposits and the rate it charges on short-term loans. Second, it assumes
that everyone is equally creditworthy. Borrowing and lending rates vary by cus-
tomer, with the largest and most secure customers receiving the most favorable
rates (i.e., the lowest margin). Because rates are known, accountingfor the
effects of divergent borrowing and lending rates within the valuation frame-
work, like trading costs and taxes, is manageable.

Freedom to Sell (Short) with Full Use of Any Proceeds For large institutions, short selling
of securities with full use of proceeds is common. Suppose, for example, that we
believe that the price of IBM will fall from, say, $120 to $100 over the next
month. If we short sell IBM, we will see $120 in cash appear in our account and
will have a liability of one share of IBM. Since we have access to the cash, we
can invest it immediately and earn interest while our short sale position is in
place. When (or if) the price drops to $100, as we predicted, we buy a share of
IBM to cover our short position. Our net gain is $120 plus interest less $100.
For retail customers, short sales are costly in the sense that the broker may not
pay interest on the cash generated from the short sale. Also, for securities in
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short supply, short sales may not be possible. Under the frictionless market
assumption, we have full use of proceeds.

Can Trade at Any Time  In order to execute arbitrage, the markets for the perfect sub-
stitutes must be open at the same time. Suppose that in late morning London time
we see that IBM’s shares are quoted at $121.00 (bid) and $121.25 (ask) on the
London Stock Exchange, while IBM’s shares closed at $120.75 (bid) and
$120.875 (ask) at the NYSE on the previous day. Does that mean a costless arbi-
trage opportunity is available? Obviously not! The NYSE is not open, so we can-
not simultaneously sell in London and buy in New York. Under the frictionless
markets assumption, the markets for all securities are open all of the time.

INTEREST RATE MECHANICS

The next step in preparing to value securities is to review interest rate mechan-
ics, that is, how to move expected cash flows through time. Throughout this
book, we use continuously compounded interest rates. Continuous rates are
realistic, convenient, and consistent with the practice of dynamic risk manage-
ment. Other types of interest rates are mentioned periodically in the discussion,
but only when it is necessary to unravel the mystery of the pricing conventions
used in a particular market.

Continuously Compounded Interest Rates

Interest rates follow a number of conventions. The first and, perhaps, simplest
convention is that interest rates are quoted on an annualized basis. This is done
to facilitate comparisons across different investment alternatives. If one invest-
ment promises a 40% return over five years and another promises a 23% return
over three years, it is not immediately obvious which investment we prefer. On
the other hand, if we are told that the first investment promises 6.96% annually
and the second investment 7.14% annually, the choice is obvious. We are com-
paring apples with apples.

A second convention is that rates are usually quoted as nominal rates. If a
bank advertises that it pays 6% compounded semiannually, they nominally pay
6% per year (recall the first convention). What they actually pay is, however,
3% each 6 months (i.e., the nominal interest rate divided by the number of com-
pounding intervals in a year). Because interest on interest is earned in the second
6-month period, the effective annual interest rate is (1 + 0.06/2)? = 6.09%. In
general, given a nominal rate of interest » and 7 compounding intervals a year,
the effective interest rate is determined by

Effective rate = (1 +7/m)" -1 (2.1)

Holding the nominal interest rate constant, the effective interest rate rises with
the number of compounding intervals. As m approaches infinity, the effective
interest rate becomes
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Effective rate = ¢ — 1 (2.2)

In (2.2), r is referred to as a continuously compounded nominal rate of interest.

On first appearance, continuous interest rates may seem unrealistic, but just
the opposite is true. Suppose we are interested in modeling the growth of a tree. A
tree does not grow by a discrete amount each few months throughout the year. It
grows continuously. If the current height of the tree is 50 feet and it grows at a rate
of §% a year, the height of the tree in 6 months will be 50e%%°-5) = 51,266 feet.

The prices of financial instruments grow in exactly the same way. For risky
securities such as stocks, prices evolve through time as new information arrives
in the marketplace. Growth is continuous in the sense that the movement of the
stock price is smooth through the day, however, the rate of movement changes.
For risk-free securities, the rate of price movement is constant. Assuming a zero-
coupon bond grows at a rate of 7 percent annually, an investment of B will have
a value of F at time T, where F is given by the formula,

F=BeT (2.3)

If the growth rate is 6% and the bond’s price is $100, its price will be F = 100¢%0(/12)
=101.511 in three months, F = 100e°%¢(¢12) = 103.045 in six months, and so on.

DISCOUNT BONDS

With the continuously compounded interest rate mechanics in hand, we now
turn to the valuation of bonds or so-called fixed income securities. Bonds are of
two types—zero-coupon (or discount bonds) and coupon-bearing bonds. This
section focuses on the discount bonds. Coupon-bearing bonds follow in the
next. We begin by describing discount bond valuation, and then use the valua-
tion formula as a means of measuring interest rate risk exposure. We follow
with a description of the discount instruments issued by the U.S. Treasury.

Valuation

A discount bond or zero-coupon bond is a debt security with a single future
cash payment, F. F is usually called the par amount or face value of the bond. If
the discount bond has an annualized yield of » percent and a time to maturity of
T years, it is

B=Fe'T (2.4)
The term, ¢, is called a discount factor. It is the current price of $1
received at time T. Figure 2.1 shows the discount factors as a function of yield to
maturity. Note that the yield and the discount factor are inversely related. The
higher the yield, the lower the discount factor. Note also that the function is
convex. As yield increases, the bond’s value decreases at a decreasing rate. Rear-
ranging (2.4), we can compute the rate of return on a discount bond given its
current price, par amount, and term to maturity, that is,
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FIGURE 2.1 Discount factor as a function of yield to maturity.

1.00

0.80

0.60 -

0.40

Discount factor

0.20 A

0.00

T T
0% 5% 10% 15% 20% 25%

Yield to maturity

In(F/B)
T

ILLUSTRATION 2.1 Compute implied yield of discount bond.

In the early 1980s, a number of banks marketed discount bonds to retail customers as a
long-term savings vehicle for future expenditures such as their children’s college tuition.
Interest rates were so high at the time that it was not uncommon to see advertisements
saying that a four cent investment today will provide one dollar in 25 years. What is the
implied annualized rate of return on this investment?

The annualized rate of return or yield on this investment is

In(1/0.04)
e —

= 12.876%
25 5

This value may be computed using the OPTVAL function,
OV_IR_DISCB_YIELD(price, face, term)

where price is the current price of the bond, face is its face value, and term is its term to
maturity. Using the parameters of the problem,

B4 v A =0V _IR_DISCE_YIELD($E%1,5B%2 $B%3)
A | B e w1 =
1 |Present value 0.040
2 |Future value 1.000
3 |Years to maturity 25
4 |Implied interest rate I 12.876% -I
5
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Risk Measurement

In holding a fixed income security such as a discount bond, we are often con-
cerned with knowing what will happen to the value of our bond if interest rates
change. Such risk measures are easy to develop once we know how to value the
bond. One approach is to simply change the yield in the valuation formula (2.4)
from its current level to see what happens to bond value. Indeed, this was the
procedure used to generate Figure 2.1. Unfortunately, different bonds react to
changes in interest rates in very different ways. To isolate the essential interest
rate risk characteristics of a bond, we approximate the shape of the bond valua-
tion function using a polynomial function. Specifically, we expand the bond val-
uation function (2.4) into a Taylor series about the current yield r0,3 that is,

2 3
dB = Z—l:(r—ro)+——2(r—ro)2+1d—B(r—rO)3+~~ (2.6)

2 dr 6 d4r’

r

What (2.6) says is that the change in the bond valuation function (2.4) for a
given change in yield equals a polynomial function with an infinite number of
terms. As we proceed through the terms on the right-hand side of (2.6), how-
ever, they become progressively smaller in size. Interest rate risk management
usually involves only the first or, perhaps, the first and the second terms of the
series. Higher-order terms are usually ignored.

Let us begin with a first-order approximation. It goes by a variety of names
including DVO1 and duration. Ignoring second- and higher-order terms on the
right-hand side of (2.6), the approximate change in bond value for a given
change in yield in given by

de—r(r—rO) (2.7)

where the derivative dB/dr is determined from the valuation equation (2.4), that is,

B T (2.8)
dr

DV01 The acronym, DVO0I1, stands for the dollar value of one basis point (i.e.,
0.01 of 1%). To create the appropriate formula for DV01, we substitute (2.8)
into (2.7) and replace 7 — ¢ with 0.0001 and get

dB z—TFe_rT(O.OOODEDVOl (2.9)

3 A Taylor series expansion can be used to approximate any smooth nonlinear function such
as the bond valuation equation. For more details regarding this application, see Appendix 2A.
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Duration Duration is the percent change in bond value for a given change in
yield,* and is also commonly used as a measure of interest rate risk exposure. To
understand its origin, divide (2.7) by the current bond price, that is,

dB/B
dB/B =

(r—rp) (2.10)

Since duration is defined as minus the percent change in bond price with respect
to a change in yield,

DURE_dB/B
dr
we have
B/B B _TFe"T
pur=_9B/B _ _dBsdr - -TFe . 2.11)
dr B FeirT

The duration of a discount bond equals the negative of its years to maturity,
and, given the value of duration, the percent change in a discount bond value
for a given change in interest rates can be approximated using

dB/B=~-T(r-r,) (2.12)

In other words, if a bond has T years to maturity, a one basis point increase in
the bond’s yield will cause its value to fall approximately 0.01 x T%. Note that
the DV01 measure (2.9) gives the same result after we divide through by the
bond value.

ILLUSTRATION 2.2 Use duration to approximate discount bond price change.

Suppose that 25 years ago you bought $4,000 worth of the discount bonds in Illustration
2.1. What would have happened to the value of the bonds if interest rates would have
immediately jumped by 100 basis points? Compute the actual change in price using the
bond formula (2.4), and then the approximate change using duration (2.10).

At a yield of 12.876%, the value of your investment at inception was $4,000. If the
interest rate jumps to 13.876%, your investment value will fall to

B = 100,000e 1387625 _ 3 11520

This can be verified using the OPTVAL Library function
OV_IR_DISCB(face, rate, term, vdc)

*The concept of duration was first introduced in Macaulay (1938). Other treatments are pro-
vided in Reddington (1952) and Samuelson (1945).
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where face is the face value of the discount bond, rate and term are its yield and term to
maturity, respectively. The indicator variable vdc instructs the function to return the
bond’s value (“v” or “V”), duration (“d” or “D”), or convexity (“c” or “C”). The bond’s
value is illustrated below. With a 100 basis point increase in the interest rate, the bond
value falls by $884.20.

B10 - # =0%_IR_DISCB($B%2 $B%9 $B%3,"")
A | B | E |
1 |Original bond price 4,000
2 |Face amount 100,000
3 |Years to maturity 25
4 |Original interest rate 12.876%
5 |Duration 25
6 |Convexity 625
i
2 |Change in interest rate 1.00%
9 |MNew interest rate 13.876%
10 [New bond value 3,115.20
11 |Actual change in bond value -884.80

The duration-based approximation is given by (2.10). Multiplying (2.10) by the
bond price provides an estimate of the change in bond value. Since the duration of your
bond is 25, an increase of 100 basis points implies that the value of your bond will fall by
approximately 25% or $1,000, that is,

dB~-BxTx(r-ry) = -4,000x25x0.01 = —1,000

The price discrepancy arises from the fact that the bond valuation function is convex.
(See Figure 2.1.) First-order approximations such as duration are accurate for only small
changes in yield. As yield changes become large, the degree of error using the duration
approximation becomes large.

Convexity DVO1 and duration first-order approximations of the bond valuation
function that are based on the slope of a straight line that is tangent to the bond
valuation function at the current yield, 7y, as shown is Figure 2.2. For small
changes in yield, a first-order approximation will be reasonably accurate, how-
ever, the approximation error grows large with the size of the yield change. To
improve the degree of accuracy in the approximation, we can also incorporate
the second-order term of the Taylor series expansion (2.6). Using percent
changes, the approximation is now

dB/B 1(d*B/B 5
dB/Bz( - )(r—ro)+§[ = ](r—ro) (2.13)

The second term in parentheses on the right-hand side of (2.13) is called con-
vexity. Since the second derivative of the bond valuation function is
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FIGURE 2.2 Slope of bond valuation formula.
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2
dr
the definition of convexity of a discount bond is
2 2 2 T
d’B/B  d°B/dr* T’Fe
CVX = —— = - - = T (2.15)
dr B Fe'

ILLUSTRATION 2.3 Use duration and convexity to approximate discount bond price change.

Reconsider 1llustration 2.2 using duration and convexity to approximate the change in

price of the discount bond.

At a yield of 12.876%, the value of your investment at inception was $4,000. If the
interest rate immediately increases to 13.876%, your investment value would fall to
$3,115.20 or by $884.80. The predicted value change using duration and convexity is

dB =~ B[— T(r—ry) + %Tz(r— rO)ZJ

625
- 4,000[— 25(0.01) + T(0.0001)} = _875.00

Note that the degree of approximation error has fallen from $115.20 or 13.0% to —$9.80

or -1.1%.
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Discount Bonds Traded in the Marketplace

The focus now turns to discount bonds traded in the marketplace. Since we need
a proxy for the zero-coupon risk-free rate of interest in subsequent chapters, we
focus here on only U.S. Treasury securities. For terms to maturity of one year or
less, we use Treasury bills. For terms to maturity greater than one year, we use
Treasury strip bonds.

Treasury Bills A number of different zero-coupon or discount bonds trade in the
U.S. Perhaps the most commonly known are U.S. Treasury bills or, simply, T-
bills. To finance the operations of the government, the U.S. Treasury auctions
new 28-day, 91-day, and 182-day bills every Thursday. The prices of T-bills fol-
low certain reporting conventions. It is important to understand these reporting
conventions since the interest rate on T-bills is an excellent proxy for the risk-free
rate of interest—a rate applied throughout the applications of this book. Table
2.1 contains a panel of T-bill price quotes obtained from Bloomberg on March
29, 2006. The first column contains the maturity date of each T-bill, and the sec-
ond contains the number of days to maturity. The number of days to maturity
equals the actual number of days from the close on March 29, 2006 to the matu-
rity date less one business day since T-bills have one-business day delayed settle-
ment. The columns headed “Bid” and “Ask” are bank discounts or simply
discounts. They are neither prices nor interest rates. A bank discount is defined as

Bank discount = (360/7)(100 — T-bill price) (2.16)

where 7 is the number of days to maturity and 360 is the number of days in a
“banker’s year.” To deduce the actual bid and ask prices for the T-bill, we must
invert (2.16) and use

T-bill price = 100 — Bank discount(7/360) (2.17)

If we again consider the T-bill with maturity date of 6/29/06, we see that the bid
and ask discounts are 4.52 and 4.51, respectively. This means that if we bought
this T-bill, you would pay

T-bill price = 100 — 4.51(91/360) = 98.6000% of par

If the T-bill has a par value of $1 million, you would pay $986,000.

At this juncture, it is important to digress and link the price to the continu-
ously compounded rate of return on this T-bill. If you pay 98.83275% of par
for the T-bill that matures in 69 days, the T-bill rate price promises to grow at
an annualized rate of

_ 1n(100/98.6000)
a 91/365

= 4.599%

Note that 365 days rather than 360 days are used in the computation. This is
because time should be measured in actual years rather than banker’s years.
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TABLE2.1  U.S. Treasury bill discounts drawn from Bloomberg on March 29, 2006.

Maturity  Days to Maturity Bid Ask Ask Yield
4/6/06 7 4.46 4.45 4.52
4/13/06 14 4.60 4.56 4.63
4/20/06 21 4.59 4.55 4.63
4/27/06 28 4.61 4.60 4.68
5/4/06 35 4.54 4.51 4.59
5/11/06 42 4.52 4.51 4.60
5/18/06 49 4.54 4.53 4.62
5125106 56 4.50 4.49 4.58
6/1/06 63 4.55 4.53 4.63
6/8/06 70 4.53 4.52 4.62
6/16/06 78 4.53 4.52 4.63
6/22/06 84 4.53 4.52 4.63
6/29/06 91 4.52 4.51 4.63
716/06 98 4.55 4.53 4.65
7/13/06 105 4.56 4.53 4.65
7120/06 112 4.54 4.53 4.66
7127106 119 4.60 4.58 4.71
8/3/06 126 4.57 4.56 4.70
8/10/06 133 4.60 4.59 4.73
8/17/06 140 4.60 4.59 4.74
8/24/06 147 4.62 4.61 4.76
8/31/06 154 4.63 4.62 4.78
917106 161 4.64 4.63 4.79
9/14/06 168 4.65 4.64 4.81
9/21/06 175 4.65 4.64 4.81
9/28/06 182 4.65 4.64 4.82

The last column is the bond equivalent yield based on the ask price. It repre-
sents an attempt to make the yield on a T-bill comparable to the yield on other
Treasury securities whose yields are based on a 365-day, as opposed to 360-day,
calendar year. Note that the reported bond equivalent yield for the 6/29/06 T-bill
is 4.63%. This rate is computed by solving

T-bill price x [1 + Bond equivalent yield(%ﬂ = 100 (2.18)

Alternatively, the bond equivalent yield may be computed directly from the T-
bill’s discount:

365 x Bank discount

Bond equivalent yield =
ond equivalent yie 360 — Bank discount X 7

(2.19)
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Either way, the number is, at best, an approximation for the rate of return on
the T-bill. The actual rate of return (growth) of the T-bill over its life is the con-
tinuously compounded interest rate, 4.599%.

Stripped Treasury Bonds and Notes U.S. Treasury strips’ are also discount bonds. The
U.S. Treasury does not issue these instruments directly. Instead, they issue only
coupon-bearing bonds and notes with maturities as long as 30 years. What hap-
pens is that the original issue coupon bonds are “stripped,” with each coupon as
well as the principal amount sold as a separate unit. In the absence of costless
arbitrage opportunities, the sum of the prices of the discount bonds stripped
from the original coupon issue must be equal to the price of the coupon bond.
Table 2.2 contains the ask price quotes for STRIPS of different maturities.
The price data were drawn from Bloomberg on March 29, 2006. The last col-

TABLE2.2  Selected U.S. Treasury STRIP prices drawn from Bloomberg on March 29, 2006.

Maturity Ask Price Years to Maturity Continuous Yield
6/15/06 99.04 0.21 4.51%
9/30/06 97.68 0.51 4.63%
3/15/07 95.55 0.96 4.73%
3/15/08 91.05 1.96 4.77%
3/15/09 86.72 2.96 4.81%
3/15/10 82.91 3.96 4.73%
2/15/11 79.48 4.89 4.70%
2/15/12 75.62 5.89 4.75%
2/15/13 71.85 6.89 4.80%
2/15/14 68.30 7.89 4.83%
2/15/15 65.11 8.89 4.83%
2/15/16 61.88 9.89 4.85%
2/15117 58.66 10.89 4.90%
2/15/18 55.54 11.89 4.94%
2/15/19 52.71 12.89 4.97%
2/15/20 49.91 13.89 5.00%
2/15/21 47.45 14.90 5.00%
2/15/22 45.23 15.90 4.99%
2/15/23 42.98 16.90 5.00%
2/15/24 40.89 17.90 5.00%
2/15/25 38.87 18.90 5.00%
2/15/26 37.09 19.90 4.98%
2/15/27 35.43 20.90 4.96%
2/15/28 33.86 21.90 4.95%

5The U.S. Treasury created a program called Separate Trading of Registered Interest and Prin-
cipal of Securities (STRIPS) in February 1985 to promote liquidity in the zero-coupon bond
market. For more information regarding STRIPS, see Fabozzi and Fleming (2005).
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umn in the table contains the continuously compounded yield to maturity com-
puted using equation (2.5) based on the reported ask price. The column shows
that the zero-coupon yield curve (i.e., the relation between yield and term to
maturity) is upward sloping for maturities up to about 12 years and then flat-
tens at a level of about 5%.

COUPON-BEARING BONDS

This section focuses on coupon-bearing bonds. A coupon-bearing bond or, simply,
a coupon bond pays a stated rate of interest periodically throughout the bond’s
life, ending with an interest payment and repayment of the bond’s par value.
While the valuation and risk measurement of a coupon-bearing bond is seemingly
more complicated than a discount bond, it is important and useful to recognize
that a coupon bond is nothing more than a portfolio of discount bonds.°

Valuation

The value of a coupon bond, B, is the sum of the values of its constituent dis-
count bonds, that is,

n n T
B.= Y By, = ¥ CFe " (2.20)
i=1 i=1

where the subscript i denotes the ith discount bond and the value of ith discount
bond is now denoted, B ;. CF; is the amount of the cash flow received at the matu-
rity of the ith discount bond, 7; is the zero-coupon discount rate used to bring the
cash flow to the present, and T; is the time until the cash flow i occurs. Prior to
maturity, the cash flow equals the coupon interest payment, CF; = COUP, as is
shown in Figure 2.3. The amount of the interest payment, COUP, is the stated cou-
pon interest rate times the par value of the bond, F,. At maturity, the cash flow
equals the coupon interest payment plus the repayment of the face value, CF; =
COUP + F,. The number of coupon payments is denoted 7. Note that equation
(2.20) uses maturity-specific discount rates for each cash flow. The relation between
zero-coupon yields and their terms to maturity is called the term structure of inter-
est rates or the zero-coupon yield curve. We discuss the yield curve shortly.

FIGURE 2.3 Cash flows of a coupon-bearing bond.
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© This valuation principle is called valuation by replication and is key to understanding deriv-
ative contract valuation and risk management.
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ILLUSTRATION 2.4 Compute value of coupon-bearing bond given zero-coupon yield curve.

Assume that the current zero-coupon yield curve is given by the function,

r. = 0.04+0.01In(1+T,)

where T; is measured in years. Compute the value of a five-year semiannual coupon-bear-
ing bond with a 7% coupon interest rate.

To value the bond, you need the zero-coupon interest rates corresponding to each
cash flow. To do so, you apply the given term structure formula. The zero-coupon yield
rate corresponding to the first constituent discount bond maturity in 0.5 years, for exam-
ple,is 7;=0.04 + 0.01 In(1 + 0.5) = 4.405%. The cash flow promised in 0.5 years is 0.07/
2 x 100 = 3.50, so the value of the first discount bond is 3.50¢70:04405(0-5) ~ 3 4237,
Applying this procedure recursively (i.e., coupon bond valuation formula (2.20)), the
value of the five-year, 7% coupon bond is 105.0902, the individual discount bonds of
which are summarized in the table below.

Years to Maturity  Zero-Coupon Yield Cash Flow PV of Cash Flow

0.5 4.405% 3.50 3.4237
1.0 4.693% 3.50 3.3395
1.5 4.916% 3.50 3.2512
2.0 5.099% 3.50 3.1607
2.5 5.253% 3.50 3.0693
3.0 5.386% 3.50 2.9778
3.5 5.504% 3.50 2.8867
4.0 5.609% 3.50 2.7965
4.5 5.705% 3.50 2.7076
5.0 5.792% 103.50 77.4772
Total value 105.0902

This value may be confirmed using the OPTVAL function,
OV_IR_FIXED_ZC(coup, freq, face, tb, ncoupr, term, rate, vdc)

where coup is the coupon interest rate expressed in decimal form (i.e., 0.07), freq is the
frequency of coupons per year (i.e., two), face is the face value of the bond (i.e., 100), tb
is the time until the first coupon payment expressed in years (i.e., 0.5), ncoupr is the
number of coupons remaining (i.e., 10), ferm is the vector of times to maturity of the dis-
count bonds (i.e., the numbers in the first column in the above table), and rate is the vec-
tor containing the corresponding zero-coupon rates (i.e., the numbers in the second
column in the above table). The indicator variable vdc instructs the function to return the
bond’s value (“v” or “V?), duration (“d” or “D”), or convexity (“c” or “C”). The bond’s
value, for example, is
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B8 v A =0V_IR_FIXED_ZC($B%1,5652 $B%3 $6%4 $B55 $0$3:$D$12 $EF3:$E512,"V")
A | B [c] D |

LCoupon rate: 7.00% Zero-coupon yield curve
| 2 |Frequency: 2 Years to maturity  Yield
| 3 |Par value: 100 0.5 4.405%
| 4 |Years to first coupon: 0.5 1.0 4.693%
| 5 |No. of coupons remaining: 10 1.5 4.916%
L 2.0 5.099%

7 Fixed-rate bond 2.5 5.253%

8 |Vvalue I 105.0902 ! 3.0 5.386%
| 9 |Duration 4.3174 3.5 5.504%
i Convexity 20.3825 4.0 5.609%
|11 | a5 5.705%
[ 12 | 5.0 5.792%

Risk Measurement

Like in the case of discount bonds, the two most commonly used interest rate
risk measures for coupon bonds are duration and convexity. In both cases, they
are weighted averages of the durations and convexities of the constituent dis-
count bonds where the weights are the proportion of coupon bond value attrib-
utable to the ith discount bond. Letting w; represent the weight attributable to
the ith discount bond, we have

n
, 2 Bai

Yw, = — =1 (2.21)
Duration The duration of a coupon bond is

n n
DUR, = - Y w,DUR,; = - Y w,T, (2.22)
i=1 i=1

where the duration of the discount bond is given by (2.11), that is, DUR;; = T}.
Expression (2.22) shows that the duration of a coupon bond is a weighted aver-
age term to maturity of a coupon bond. Equation (2.22) also offers some impor-
tant insights regarding the price risk or interest rate risk of a coupon bond.
First, the longer the term to maturity of a bond, the greater the proportion of
coupon bond value attributable to distant cash flows, the greater the duration,
and, hence, the greater the interest rate risk. Second, the higher the coupon
interest rate of a bond, the greater the proportion of the bond’s value received
earlier in the bond’s life, the lower the duration, and, hence, the lower the inter-
est rate risk. Third, the higher the level of interest rates, the lower importance of
distant cash flows in the determination of bond value, the shorter the duration,
and the lower the interest rate risk.

Convexity The convexity of a coupon bond is
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CVX, = Y w,CVX,,; = Y wT; (2.23)
i=1 i=1

Like in the case of duration, the convexity of a coupon bond (2.23) is a weighted
average of the convexities of the constituent discount bonds where the weights are
the proportion of coupon bond value attributable to the ith discount bond, and
the convexity of a discount bond is given by (2.15), that is, CVX, ; = TZ-Z. It is
important to recognize that the duration and convexity measures (2.22) and
(2.23) make the implicit assumption that the zero-coupon yield curve shifts in a
parallel manner (e.g., all yields shift upward or downward by the same amount).”

ILLUSTRATION 2.5 Compute duration and duration/convexity approximations for a coupon
bond.

Compute the actual percent change in the value of a five-year semiannual coupon-bearing
bond with a 7% coupon interest rate assuming the zero-coupon yield curve changes from

r; = 0.04+0.01ln(1+T))

to

7, = 0.05+0.01In(1+T)

Compare the actual percent value change with the value changes based on the duration
and duration/convexity approximations.

The first step is to compute the duration and the convexity of this coupon-bearing
bond. The table below details the calculations. The present value of the cash flow repre-
sented in the first row constitutes 3.258% of the total value of the coupon bond, that is,

3.50¢ 0040505 3 4537

1050900 ~ 1050900 - 203258

The duration of this discount bond is 0.5, so its contribution to the duration of the cou-
pon bond is 0.03258(0.5) = 0.01629. The convexity of this discount bond is 0.5 = 0.25,
so its contribution to the convexity of the coupon bond is 0.03258(0.25) = 0.00814.
Repeating the computations for each row, and then summing shows that the duration of
the coupon bond is 4.3714 and the convexity is 20.3825.

7Tt is, of course, possible to allow the yield curve to shift in other ways. Chapter 18 focuses
on the valuation of fixed income securities under different assumptions regarding the move-
ment of interest rates through time.
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Components of

Years to  Zero-Coupon  Cash PV of Proportion

Maturity Yield Flow CashFlow  of Total  Duration Convexity
0.5 4.405% 3.50 3.4237 0.03258 0.01629 0.00814
1.0 4.693% 3.50 3.3395 0.03178 0.03178 0.03178
1.5 4.916% 3.50 3.2512 0.03094 0.04641 0.06961
2.0 5.099% 3.50 3.1607 0.03008 0.06015 0.12030
2.5 5.253% 3.50 3.0693 0.02921 0.07302 0.18254
3.0 5.386% 3.50 2.9778 0.02834 0.08501 0.25502
3.5 5.504% 3.50 2.8867 0.02747 0.09614 0.33649
4.0 5.609% 3.50 2.7965 0.02661 0.10644 0.42577
4.5 5.705% 3.50 2.7076 0.02576 0.11594 0.52172
5.0 5.792% 103.50 774772 0.73724 3.68622  18.43111

Total 105.0902 1.0000 4.3174 20.3825

These values may be confirmed using the OPTVAL function,
OV_IR_FIXED,ZC(coup, freq, face, tb, ncoupr, term, rate)

whose parameters are defined above. The duration function is invoked in the spreadsheet
below.

B9 v A =0V_IR_FIXED_ZC($B%1,$B%2 $B%3 $B54 $B%5,$0%3:$D$12 $E$3:$E$12,"D")
A | B [c] D B R |

_l_Coupon rate: 7.00% Zero-coupon yield curve
| 2 |Frequency: 2 Years to maturity  Yield
| 3 |Par value: 100 0.5 4.405%
| 4 |Years to first coupon: 0.5 1.0 4.693%
| 5 |No. of coupons remaining: 10 1.5 4.916%
L 2.0 5.099%

7 Fixed-rate bond 2.5 5.253%

8 |value 105.0902 3.0 5.386%
[ 9 [ouration 3.5 5.504%
i Convexity 20.3825 4.0 5.609%
[ 11 | 45 5.705%
[ 12 | 5.0 5.792%

Next, compute the anticipated percentage changes in bond value based on the dura-
tion and duration/convexity approximations. Based solely on duration, the anticipated
change is

-4.3174 x 0.01 =-4.3174%

while, based on duration and convexity, the anticipated change is

1
~4.3174(0.01) +5(20.3825)(0.0001) = ~4.2155%

If you simply shift the zero-coupon yield curve up by 100 basis points, you will find that
the bond’s value has changed from 105.0902 to 100.6585—an actual percent change of
-4.2171%. Thus, you have measured the degree of approximation error for each
method. The approximation based solely on duration overstates the percent movement
by 0.1003%, and the approximation based on duration/convexity understates the per-
cent movement by 0.0016%.
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Coupon Bond Conventions

As noted earlier, the duration and convexity measures (2.22) and (2.23) make the
implicit assumption that the zero-coupon yield curve shifts in a parallel manner
(e.g., all yields shift by the same amount). To simplify matters, it is not uncommon
in practice to see a single discount rate called the yield to maturity used to dis-
count all cash flows of a coupon bond.

Yield to Maturity Yield to maturity is a summary statistic that describes the bond’s
promised rate of return. The yield to maturity is computed by setting the current
bond price equal to the present value of the cash flows and solving for y, that is,

n
T,
B.= ¥ CFe’ " (2.24)
i=1

Under the assumption that there is a single discount rate, the duration of a cou-
pon bond is given by

vT.
" (CFe v
DUR, = -3 ——|Ti (2.25)
i=1 ¢
and its convexity is given by
" Cie_y ' 5
CVX, = =T (2.26)
i=1 ¢

Note that the duration and convexity computed using (2.25) and (2.26) are only
approximations of the correct values (2.22) and (2.23). The present value of the
ith cash flow is not equal to the price of the ith discount bond, that is,

_—
CF.e * Bd,i

1

The OPTVAL Function library contains a function for computing the value, the
duration, and the convexity of a fixed rate bond given its yield to maturity:

OV_IR_FIXED_YLD(coup, freq, face, tb, ncoupr, yld, vdc)

where coup is the coupon interest rate expressed in decimal form, freq is the fre-

quency of coupons per year, face is the face value of the bond, #b is the time

until the first coupon payment expressed in years, ncoupr is the number of cou-

pons remaining, and yld is the bond’s promised yield to maturity. The indicator
3 »

variable vdc instructs the function to return the bond’s value (“v” or “V”),
duration (“d” or “D”), or convexity (“c” or “C”).
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ILLUSTRATION 2.6 Compute yield to maturity of coupon-bearing bond given the yield curve.

Assume that the current zero-coupon term structure of spot rates is given by the curve,

r. = 0.04+0.01In(1+T,)

where T; is measured is years. Compute the value and the yield to maturity of a five-year
semiannual coupon-bearing bond with a 7% coupon interest rate. If this coupon-bearing
bond can be purchased for $104, can you earn a costless arbitrage profit, and, if so, how?

You know from Illustration 2.4 that the five-year, 7% bond is 105.0902. The yield to
maturity of this bond is computed by setting the bond price equal to the present value of
the cash flows and solving for a single discount rate. The discount rate that satisfies

9
vT. T
105.0902 = ¥ 3.50¢ ' +103.50¢ "
i=1
is 5.729% as is shown in the table below. The syntax for the OPTVAL function is
OV_IR_FIXED_YLD_YIELD(coup, freq, face, tb, ncoupr, bprce)

where all parameters are defined as above and bprce is the bond’s price including accrued
interest.

B7 - i =0%_IR_FIXED_YLD_YIELD($B%1, 5652 5653 $B6%4 $655,56%6)
A | | @ [ D | e
| 1 |Coupon rate: 7.00%
| 2 |Frequency: 2
| 3 |Par value: 100
iYears to next payment: 0.5
| 5 |No. of payments remaining: 10
| 6 |Bond price: 105.0902
| 7 |Implied yield to maturity: 5.729% 1

Note that this yield to maturity of the coupon bond is below the zero-coupon rate on a
five-year zero-coupon bond, 5.792%, in Illustration 2.5. This is because a five-year cou-
pon-bearing bond does not have five years to maturity from an economic standpoint. The
intermediate payments made during the bond’s life effectively shorten its overall maturity.

Assuming the coupon-bearing bond can be purchased for $104, a costless arbitrage
profit can be earned. To do so, you would buy the coupon bond and then sell zero-cou-
pon bonds in the amount and maturity of each cash flow, that is, sell 3.50 in par value of
zero-coupon bonds maturing in six months, and 3.50 in par value of zero-coupon bonds
maturing in one year, and so on. In this way, the interest receipts of the coupon-bearing
bond exactly match the payments you need to make to cover your short sale obligations.
Since you know that you can buy the coupon bond for $104 and sell the zero-coupon
bond portfolio (using the zero-coupon yield curve) for $105.0902, the present value of
the costless arbitrage profit of $1.0902.

ILLUSTRATION 2.7 Compute duration and convexity of coupon bond using yield to maturity.

Again, assume that the current zero-coupon yield curve is given by the function,

7, = 0.04+0.01In(1+T),)
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where T; is measured is years. Compute the duration and convexity of a five-year semian-
nual coupon-bearing bond with a 7% coupon interest rate using the single yield to matu-
rity, 5.729%, from Illustration 2.6.

The table below summarizes the computations from basic principles. First, you com-
pute the present values of the cash flows using a constant yield to maturity. Naturally, the
total of the values of the discount bonds computed using yield to maturity is 105.0902.
Recall from Illustration 2.6, this is exactly how the yield to maturity was defined. Next,
you compute the proportion of total coupon bond value that is attributable to each dis-
count bond. The first row of the table shows

3.4012¢ 207205 /105.0902 = 0.01618

Finally, compute the contributions of each discount bond to the duration and con-
vexity of the coupon bond and sum as you did in Illustration 2.4. The yield-based dura-
tion is 4.3240, compared with 4.3174 using the zero-coupon yield curve approach, and
the yield-based convexity is 20.4273, compared 20.3825 using the zero-coupon yield
curve approach. While these differences are small in the illustration at hand, they will
vary depending on factors such as the coupon rate of the bond, its term to maturity, and
the slope of the yield curve.

Components of

Years to Cash PV of Proportion
Maturity Flow Cash Flow of Total Duration Convexity
0.5 3.50 3.4012 0.03236 0.01618 0.00809
1.0 3.50 3.3051 0.03145 0.03145 0.03145
1.5 3.50 3.2118 0.03056 0.04584 0.06876
2.0 3.50 3.1211 0.02970 0.05940 0.11880
2.5 3.50 3.0329 0.02886 0.07215 0.18038
3.0 3.50 2.9473 0.02805 0.08414 0.25241
3.5 3.50 2.8640 0.02725 0.09539 0.33385
4.0 3.50 2.7832 0.02648 0.10593 0.42374
4.5 3.50 2.7046 0.02574 0.11581 0.52115
5.0 103.50 77.7191 0.73955 3.69773 18.48867
Total 105.0902 1.0000 4.3240 20.4273
Risk Management

Risk management is the general theme of this book. Although the purpose of
this chapter is to lay the foundation for risk management using derivatives, it is
instructive to introduce the concept of hedging at this juncture to reinforce the
use of the bond risk management tools of duration and convexity.

Risk has a number of definitions. For now, assume that risk refers to unan-
ticipated changes in the value of an asset that we hold. Hedging refers to reduc-
ing the risk of our position by buying or selling other assets whose collective
value changes by the same amount as the value of the asset we hold. In the con-
text of bonds and interest rate risk measurement, a perfect hedge is one whose
value changes in an equal and opposite direction, that is,
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dValue of unhedged position  dValue of hedge instruments
3 = 3 (2.27)
r r

Duration and convexity provide the means for measuring the value changes
of your portfolio and the hedge instruments should interest rates change. To
completely hedge interest rate risk exposure means finding the number of units
of the hedge instrument to buy or sell such that the value of the overall hedged
portfolio does not change if interest rates change, that is,

dBp+nydBy; = 0 (2.28)

where Bp is the value of your bond position and By is the value of one unit of
the hedge instrument, where the expression dr has been dropped because it is
common to both sides of the equation. Duration-based hedging means approxi-
mating the changes of value with the product of duration and bond value. The
number of units of the hedge instrument to buy or sell is therefore determined
by solving

DUR ;B + nDUR B}, = 0 (2.29)

where DURp(DURp) is the duration of the unhedged bond portfolio (hedge
instrument) and Bp(Bp) is the market value of the unhedged bond portfolio
(market value of the hedge instrument). Rearranging (2.29) to solve for the
number of hedge bonds 7y, we get

DUR,B,

__ r 2.30
"H = " DUR,B, (2.30)

ILLUSTRATION 2.8 Hedge interest rate risk of bond portfolio using duration.

Suppose you own $30 million in par value of a 10% coupon-bearing bond with 10 years
to maturity. lts current yield to maturity is 8%. Suppose also that you expect that inter-
est rates may increase over the next few days and want to hedge your interest rate risk
exposure. Unfortunately, the bond you hold does not have a liquid market and selling
quickly is impossible. You have the opportunity to sell a more liquid bond, however. Its
coupon rate is 9%, term to maturity is 12 years, par value is $100,000, and yield to
maturity is 7%. How many bonds should you sell? Assume both bonds pay coupons
semiannually with the first coupon being paid in exactly six months. Show how effective
the hedge is by plotting the changes in the hedged portfolio value over a range of yield
changes from -5% to +10%.

The first step is to compute the value and the duration of the bonds. Since you have
no information about the zero-coupon yield curve, you can use the yield-based computa-
tions (2.24) and (2.25). And, rather than go through the algebra, use the OPTVAL func-
tions. The value and durations of the unhedged bond position and the hedge instrument
are as follows:
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c11 - A =0V_IR_FIXED_YLD(SC$3,5C54,5C35,5C35,5C57 $C38,"d")
A | B | @ e
L Bond Hedge
i portfolio instrument
i Coupon rate 10.00% 9.00%
| 4 |Frequency 2 2
i Par value 30,000,000 100,000
iYears to next payment 0.5 0.5
| 7 |Number of payments z0 24
| 8 |vield to maturity 8.00% 7.00%
L&
10
m

Value 33,719,752.77 114,965.65
Duration 6.7539 I 7.8916 _I

The number of the hedge bonds to sell to immunize your portfolio from interest rate
movements is therefore

6.7539(33,719,782.77)
- = -251.019

"H = 7.8916(114,965.65)

To test the effectiveness of the hedge, compute (a) the change in value of the
unhedged bond portfolio, and (b) the change in value of the hedged portfolio using a
range of yield changes from —=5% to +10%. These changes in value are shown in the figure
below. As the figure shows, a yield increase produces a significant decline in the unhedged
portfolio value. A yield increase of 200 basis points reduces bond portfolio value by more
than $4,000,000. After the hedge is in place, however, a yield increase causes the hedged
portfolio value to fall by about $63,000 (which cannot be detected on the figure because
of the scale). The fact that the hedged portfolio value changes are not 0 across all levels of
yield change means that the hedge is not fully effective. Recall that the duration-based
hedge fails to account for the convexity of the bond valuation formula. Accounting for
both duration and convexity will improve the hedging effectiveness.

— — — - Unhedged portfolio Hedged portfolio

15,000,000~

10,000,0004 <
5,000,000 N
0

—30%
-5,000,000- N

7% 9%

Dollar change in value

-10,000,000- ~~_

~15,000,000- ~-.

Hedging effectiveness can be improved by incorporating both duration and
convexity components of bond value change. In order to do so, however, two
hedge instruments will be required. To identify the appropriate number of hedge
bonds to buy or sell, you will need to match the duration and the convexity of
the bond portfolio that you want to hedge with the duration and convexity of
the hedge instruments. To negate the duration risk of the portfolio, you must
satisfy the duration constraint
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DUR By +ny; {DURy; By ¢+ ;DURy 5By 5 = 0 (2.31)

Equation (2.31) is the counterpart to (2.29) in which only duration risk was
considered. The constraint merely says that you do not have any duration risk
exposure after setting 7y 1 and npy 5. Simultaneously, you must also satisfy the
convexity constraint,

CVXpBp+my (CVXyy 1By 1+ 1y ,CVX g 5By 5 = 0 (2.32)

where CVX refers to convexity of the different instruments and the subscripts 1
and 2 refer to the first and second hedge instruments. Since there are two equa-
tions (i.e., (2.31) and (2.32)) and two unknowns (np; 1 and 7y ;), we can solve
uniquely. The solution can be found algebraically or computationally using a
iterative technique such as Microsoft Excel’s SOLVER.

ILLUSTRATION 2.9 Hedge interest rate risk of bond portfolio using duration/convexity.

Use the same problem information as in lllustration 2.8. In addition, assume that a second
hedge bond is available. Its coupon rate is 5%, term to maturity is 20 years, par value is
$100,000, and yield to maturity is 7.5%. How many of each hedge bonds should you sell
if you want to hedge both the duration and convexity risk of your portfolio? Show how
effective the duration/convexity hedge is relative to the duration-only hedge by plotting the
changes in the hedged portfolio value over a range of yield changes from —=5% to +10%.

The first step is to compute the value, and convexity of the bonds. The information
is summarized below.

D12 v fe =0V _|IR_FIXED_YLD(D$3,D%4,D%5 D86 D$7 DS ,"c")
A | B | C | D |

L Bond Hedge Hedge
L portfolio instrument 1 instrument 2
i Coupon rate 10.00% 9.00% 5.00%
| 4 |Frequency 2 2 2
| 5 |Par value 30,000,000 100,000 100,000
LYears to next payme 0.5 0.5 0.5
| 7 |Number of payments 20 24 40
i‘(ield to maturity §.00% 7.00% 7.50%
L8|
i Value 33,719,782.77 114,965.65 73,139.32

11 |Duration 6.7539 7.8916 11.5501
@ Convexity 57 4665 79.6506 I 155.5095 _I

The system of equations (2.31) and (2.32) are:

6.7539(33,719,782.77) + nyy 1(7.8916)(114,965.65)
+ 1y 5(11.5501)(73,139.32) = 0

and

57.4665(33,719,782.77) + nyy 1(79.6506)(114,965.65)
+ 1y 5(185.5095)(73,139.32) = 0
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The solution for the risk-free hedge is 75 1 = =317.661 and 7y 5 = 71.572. The effective-
ness of the duration/convexity hedge vis-a-vis the duration-only hedge is shown in the fig-
ure below. For small changes in yield, the hedges perform about the same. For large
changes in yield, however, the duration/convexity hedge clearly outperforms.

|— — — - Duration-hedged portfolio Duration/convexity hedged portfolio |
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Coupon Bonds Traded in the Marketplace

Probably the most widely known coupon bonds are the T-bonds and T-notes
issued by the U.S. Treasury. Both are coupon bonds—the difference between
them is that T-notes are originally issued with two to 10 years to maturity and T-
bonds are originally issued with maturities longer than 10 years. On August
2001, the U.S. Treasury suspended the periodic auctioning of the 30-year bond.
In August 2005, the Treasury announced its reintroduction. The first auction
after the reintroduction was held on February 9, 2006. This issue is the 4% Feb
2036 that appear in Table 2.3.

Table 2.3 contains U.S. Treasury bond and note prices on March 29, 2006. A
number of reporting conventions appear. First, coupon bond prices are reported
with a dash rather than a decimal. This is because the digits to the right of the
dash represent the number of 32nds rather than the number of 100ths. A price of
99-16 implies 99.50% of par. Where the price has the suffix “+,” an additional
one-half 32nds is added to the price. A price of 99-16+ is, therefore, 993%u4 or
99.515625% of par.

A second convention, although not stated in the panel of prices reported in
the table, is that coupon payments are semiannual (i.e., occur each 6 months).
The “6Vas of May 2030,” for example, pay coupon interest of 3.125% of par on
November 15 and May 15 each year through the bond’s life. The last coupon
and the face value are paid on May 15, 2030.

A third convention is that the reported or quoted price of the T-bond or T-
note excludes accrued interest during the current coupon period. Accrued interest
equals the amount of the semiannual coupon payment times the proportion of the
current coupon period that has elapsed since the last coupon payment, that is,

(2.33)

Al = COUP( Number of days since last coupon was paid )

Total number of days in current coupon period
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TABLE2.3  Selected U.S. Treasury bond and note prices drawn from Bloomberg on March

29, 2006.

Rate Maturity Bid Ask Ask Yield Notes
2% Jun 2006 99-16+ 99-17 4.58
2% Nov 2006 98-22 98-22+ 4.86
3% Mar 2007 98-28+ 98-29+ 4.86
4% Mar 2008 99-20 99-20+ 4.82 2-year
4% Feb 2009 99-05 99-05+ 4.81 3-year
4% Feb 2011 98-21+ 98-22 4.80 5-year
137% May 2006-11 101-03+ 101 4.49 callable
4% Feb 2012 100-09 100-10 4.81
11% Nov 2009-14 122-20 122-28 8.02 callable
4Y4 Nov 2014 95-25 95-26 4.85
4Y4 Aug 2015 95-19+ 95-20+ 4.83
4% Nov 2015 97-12+ 97-14 4.84
4% Feb 2016 97-20 97-20+ 4.80 10-year
Vs May 2018 137-20 137-22+ 4.95
815 Aug 2021 132-27+ 132-28+ 5.03
7% Feb 2025 131-14 131-15+ 5.02
6Ys Nov 2027 114-15 114-17 5.02
6Y4 May 2030 118-00 118-01+ 4.96
5% Feb 2031 106-11 106-13+ 4.92
4% Feb 2036 94-31+ 95-00 4.82 30-year

The quoted bond price is reported as its current price less accrued interest.
Thus, if we purchase the bond today, we pay the reported price plus accrued
interest. This practice seems silly. It is! But, it was instituted many decades ago,
and traditions are sometimes hard to break. In the parlance of bond traders, the
price excluding accrued interest is called the “clean price,” and the price includ-
ing accrued interest is called the “dirty price,” “gross price,” or “full price.”%”’
A fourth convention is that Treasury bonds with hyphenated maturity dates
are callable. Table 2.3 has two such issues. The notation “13% May 2006-14”
means that the U.S. Treasury has the right to call all bonds back at any of the
coupon dates between May 15, 2006 and May 15, 2011. Given the high coupon
of this issue, it should not be surprising to learn that, on January 13, 2006, the
U.S. Treasury called for redemption of this issue at par on May 15, 2006. Con-
sequently, it is being priced as if its term to maturity is about two months. Com-
pare its promised yield to, say, the 2% Jun 2006 issue as opposed to the 4% Feb

» o«

8 This “actual/actual” definition of accrued interest applies only to Treasury notes and bonds.
Accrued interest for corporate and municipal bonds is based on a 360-day year, with each
month having 30 days, and is referred to as being on a “30/360” basis.

? Like Treasury bills, Treasury notes and bonds have a one business day settlement convention.
Corporate bonds, on the other hand, generally have three-day settlement.
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2012 issue. The 11% Nov 2009-14 issue is also callable. Since this call option
has value to the Treasury, its price (yield) will be less (greater) than comparable
issues with no call feature. Note that the 11% Nov 2009-14 have a higher prom-
ised yield to maturity than comparable maturity bonds in the table.

Finally, it is worth noting that, while the market for Treasuries is extremely
active, the most recent issues, called on-the-run securities, have the highest trading
volume. This can be seen in Table 2.3. The bonds and notes denoted by “n-year” in
the last column are on-the-run issues. Note that the spreads between the bid and ask
price quotes are smaller for these issues than for the off-the-run issues. Holding
other factors constant, the higher the trading volume, the lower the bid/ask spread.

ILLUSTRATION 2.10 Deduce price of coupon-stream.

In Table 2.2, the strip bond maturing in February 2016 has a reported ask price of 61.88.
In Table 2.3, the 4% Feb 2016 issue has a reported ask price of 97.20+. Deduce the price
of the coupons of the 4% Feb 2016 without using the bond valuation formula.

First, we need to compute the decimal price of the 4% Feb 2016 coupon-bearing
bond. The reported ask price in Table 2.3 is 97-20+, which translates to 974% or
97.6406% of par. The number of days that have elapsed in the current coupon period as
of March 29, 2006 is 42, and the total number of days in the current coupon period is
184. The accrued interest is, therefore,

(4.50/2) x (42/181) = 0.5221

and the full price of the bond is 97.6406 + 0.5221 = 98.1627. Second, by the law of one
price, the present value of the principal of the coupon-bearing bond is 61.88% of par.
Consequently, the price of the coupon stream is 36.2827. To summarize,

Price

In 32nds  In Decimal

Coupon-bearing bond

Quoted bond price: 97.205 97.6406
Accrued interest: 0.5221
Market price of bond: 98.1627
Strip bond

Quoted bond price: 61.8800
PV of coupon payments: 36.2827

ILLUSTRATION 2.11 Compute price of call feature in coupon-bearing bond.

Suppose that you observe the following U.S. Treasury bond prices (quoted in 32nds):

Coupon Rate Maturity Price
8Y4% May 15,2010-15  103-19
12% May 15,2015 133-13

0% May 15, 2015 47-14
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The 8¥4% bond is callable at par on any May 15 in the years 2010 through 2015. Based
on the reported prices, compute the value of the embedded call feature.

The value of the call feature can be deduced by using the valuation by replication
principle. From the problem information, you can create an 8% coupon-bearing, non-
callable bond from the 12% coupon-bearing bond and the zero-coupon bond. To repro-
duce the 8%% coupon payments, you need to buy

825 _ 0.6875 uni
T = . units

of the 12% bond. While this purchase creates the desired coupon stream, the repayment of
the principal in May 2015 will amount to only 68.75. To make up for the difference, 100 —
68.75 = 31.25, you need to buy 0.3125 units of the zero-coupon bond. Thus, in the absence
of costless arbitrage opportunities, the price of an 8%% coupon-bearing noncallable bond is

0.6875 % 133.40625 + 0.3125 X 47.43750 = 106.5410
The value of the call feature is, therefore, 106.5410 — 103.59375 = 2.9473.

Bond Equivalent Yield The continuously compounded yield to maturity of the 6Vas
of May 2030 can be computed using equation (2.24) and is 5.5847%.'" In Table
2.2, however, the yield to maturity of the 6V4s of May 2030 is reported as
5.66%. The reported rate is called a bond equivalent yield. While bond equiva-
lents yield are not used is any of the subsequent chapters, it is useful to know
the conventions that bond markets have adopted, if only to be able to reconcile
market reporting with actual economic values.

The bond equivalent yield, y,, is a nominal yield. It is determined by equat-
ing the market price of a bond to the present value of its cash flows and solving
for y,, that is,

n-1
na./ T.
B.=(1+y/2) Y CE(1+y,/2) " (2.34)
=0

where 7y, is the number of days remaining in the current coupon period, and
14., is the total number of days in the current coupon period.!! In essence, what
the right-hand side of (2.34) does is have you go forward until the date of the
next coupon payment and value the bond, and then discount the value at the
time of the next coupon using a discount factor that depends on the fraction of
the current coupon period remaining. Note that when you compute the value of
the bond at the time of the next coupon, the first coupon in the summation does
not get discounted since it is being paid immediately. It is also worth noting that
the reported bond equivalent yield is based on the ask price (rather than the bid

19 The continuously compounded yield to maturity may be computed using OV_IR_FIXED_
YIELD(cdat, Icpn, ncpn, coup, mdat, bprce), where cdat is the current date, Icpn is the last
coupon date, ncpn is the next coupon date, coup is the coupon rate expressed in decimal, mdat
is the maturity date of the bond, and bprce is the bond price including accrued interest.

' Again, this convention applies to Treasury bonds and notes only. Corporate and municipal
bonds have a different day count convention.
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price). The rationale is that, if you bought the bond, the bond equivalent yield is
the approximate rate of return you would earn if you held it to maturity. The
bond equivalent yield of the 6V4s of May 2030, for example, is determined by

60-1

_ T.

1102092 = (1+y,/2) ™ Y CF(1+y,/2)"
i=0

where CF; equals the coupon interest payment, 3.1235, in each period but the last
and is the coupon interest payment plus the repayment of principal at maturity,
103.125.

TERM STRUCTURE OF INTEREST RATES

The rates reported for the discount bonds in Tables 2.1 and 2.2 reveal that the
zero-coupon interest rate (or spot rate of interest'?) varies with term to matu-
rity. The relation between spot rates and term to maturity is called (interchange-
ably) the term structure of interest rates, the term structure of spot rates, and
the zero-coupon yield curve. Depending on the economic environment, the
nature of the relation may change.!®> Note that it is important that all bonds
used in examining the term structure of interest rates must have a common
degree of default risk. We do not want the relation between yield and term to
maturity to be obfuscated by the fact that yields also vary with risk. In practice,
the shape of the zero-coupon yield curve is determined using the rates from U.S.
Treasury instruments like those reported in Tables 2.1 and 2.2. Treasury securi-
ties are all viewed as being free from default risk.

In applying the coupon bond valuation formula (2.20), it is necessary to know
the zero-coupon rate for each cash flow. The cash flows of a coupon bond, however,
may fall between the maturities of the zero-coupon rates observed in the market-
place. Suppose, for example, that the bond you are valuing has a cash flow occur-
ring in four months, and you can find only zero-coupon rates with three months
and six months to maturity. Somehow, you have to come up with a four-month
zero-coupon rate. One method is linear interpolation. You would simply take a
time-weighted average of the three-month and six-months rates, weighting the
three-month rate with 2/3 and the six-month rate with 1/3. Another approach is to
smooth the entire set of zero-coupon rates at once using techniques such as ordinary
least squares regression or cubic spline interpolation. Such techniques are described
in detail in Chapter 18.

For illustrative purposes, we assume that the entire term structure of
observed rates has been smoothed and can be represented by a mathematical
relation such as

7, = 0.04+0.01In(1+T,) (2.35)

121t is called the spot rate of interest because it applies to a loan that begins today.
13 Typically, the curve is upward sloping because lenders of funds prefer short maturities while
borrowers prefer long.
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where 7; is the continuously compounded rate on a loan maturing in T; years.
Where T; is 0, the rate is 4%. This is the rate of interest on an overnight loan.
Where T; is 5, the rate of interest is 5.792%. Figure 2.1 shows the rates pro-
duced by (2.35) for different terms to maturity. As the figure shows, the term
structure is upward sloping, with the rate of increase diminishing with term to
maturity. Also plotted in Figure 2.1 are the discount factors corresponding to
each zero-coupon rate. Many practitioners prefer working with discount factors
rather than discount rates. Recall that a discount factor is today’s price of $1
received at future time T}, that is,

Implied Forward Rates of Interest

The zero-coupon vyield curve represents the spot rates interest on loans of vary-
ing maturities. The loans begin foday and extend until the end of the bond’s life,
T. The zero-coupon vyield curve also embeds information about the rates of
interest that may be earned on loans in the future. Such rates are called forward
rates of interest. To deduce the forward rate on a loan that will begin at time T}
and run until time T,, we first go to the zero-coupon yield curve and find the
spot rates corresponding to each maturity, that is, r; and r,. Next, assume that
we want to invest $1 for a period of time equal to T,. One way we can do this is
to buy a zero-coupon bond with maturity T,. Another way is to buy a zero-cou-
pon bond with maturity T¢, and then reinvest the terminal proceeds in a zero-
coupon bond with maturity T, — T;. The forward rate of interest from Ty to T,
can be deduced by equating the terminal values of the two investment alterna-
tives, that is,

T T T,-T
RESE I 1ef1,2( =Ty (2.36)

Taking the natural logarithm of both sides of (2.36), replacing subscript 1 with
the notation i and 2 with j, and rearranging to isolate f; j, the implied forward
rate of interest on a loan beginning at time T; and ending at time T is

ro/- -1 T;

fii= L= (2.37)
] 1

The zero-coupon vyield curve can also be used to deduce forward discount
factors. From (2.36), we know

1 1 1

= X
DF, DF, FDF,,

(2.38)

where DF; is the discount factor of the ith zero-coupon bond currently observed
in the marketplace and FDF; ; is the implied forward discount factor beginning
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at time T; and ending at time T;. Rearranging (2.38), we see that, in general,
implied forward discount factors may be computed as

DF/»
i

Consequently, implied forward rates may also be computed as

_ In(DE/DEF) .40,
T AT, ‘

ILLUSTRATION 2.12 Compute forward rates and forward discount factors from zero-coupon
yield curve.

Assume that the current zero-coupon term structure of spot rates is given by the curve,

r, = 0.04+0.01In(1+T,)

Compute the spot rates and discount factors on loans beginning now and ending in years 1
through 10, by increments of one year. Also, compute the one-year forward rates and one-
year forward discount factors beginning at the end of years 1 through 9 by increments of
one year.

To compute the zero-coupon spot rates, apply the given term structure formula. The
one-year spot rate, for example, is 7{ = 0.04 + 0.01 In(1 + 1) = 4.693%. The one-year dis-
count factor is DF; = ¢ %043 = 09542, The complete set of results is shown in the
table below. To compute the forward rates and forward discount factors based on the
zero-coupon spot rates, you apply the formula (2.37) and (2.39). The implied forward
rate on a one-year loan beginning in 1 year is

0.05099(2) - 0.04693 (1
fir= (2) - D _ 5504

The implied price of a one-year discount bond paying $1 in year 2 is

DF,  0.9031

— = 2 = 0.9464
DF, ~ 09542 = 0%

FDF, , =

Note also the relation between the implied forward rate and the implied discount factor,
that is,

In(0.9464
fia= —Ii-(—z——l--—) = 5.504%

The OPTVAL Function library includes a routine for computing implied forward rates:
OV_IR_TS_FORWARD_RATE(r1, 72, t1, £2)
where 71 and 72 are the spot rates maturing at the beginning and at the end of the for-

ward rate period, and #1 and #2 are the times to maturity of the respective rates. An
application of the function is shown in the spreadsheet below.
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D5 v f =0V _IR_TS_FORWARD_RATE(BS BB A5 AB)
T 2700

L One-year Forward
L Years to Spot Discount = forward | discount
3 | maturity rate factor rate factor
4 0 4.000% 1.0000

E 1 4.693% 0,9542 I 5,504 % .I 0.9464
L 2 5.099% 0.9031 5.962% 0.9421
L 3 5.386% 0.8508 6.279% 0,9391
L 4 5.609% 0.7990 6.521% 0.9369
L S 5.792% 0.7486 6.717% 0,9350
£ 6 5.946% 0.6999 6.881% 0.9335
L 7 6.079% 0.6534 7.022% 0.9322
i 3 6.197% 0.6091 7.145% 0.9310
£ 9 6.303% 0.5671 7.256% 0.9300
ﬁ 10 6.398% 0.5274

Note that the implied one-year forward rate starting at time 0 equals the one-year
spot rate. This stands to reason since a forward rate loan beginning at time 0 is simply a
spot rate loan. Note also that the implied forward rates can be significantly higher than
the spot rates. The spot rates on 9-year and 10-year loans are 6.303% and 6.398%,
respectively, and yet the implied one-year forward rate for a loan beginning at the end of
year 91is 7.256%.

ILLUSTRATION 2.18 Lock-in interest rate on forward loan.

Suppose that you go to your local bank and tell the manager that you want to borrow
$50,000 in three months and want to repay the loan with a single balloon payment nine
months later. Because you believe interest rates will rise over the next three months, you
further request that the interest be locked-in today. The manager says that your credit
risk is no problem, but that he cannot lock-in the interest rate because he has no idea
what it will be in three months. You then ask about the current borrowing and lending
rates at the bank, and he gives you the following table.

Term Lending Rate  Borrowing Rate
3 months 3.00% 3.50%
6 months 3.50% 4.00%
9 months 4.00% 4.50%
1 year 4.50% 5.00%

Based on these quoted rates, what forward rate can you lock in today on a nine-month
loan beginning in three months? Show how to structure the forward loan. What rate can
you lock in today? (Assume all interest rates are continuously compounded.)

In order to compute the forward rate, you must identify the two spot rates that
straddle the forward period, that is, the spot rates that mature at the beginning and end
of the forward loan period—three months and one year. Because you want to borrow
money in the forward period, the longer term spot rate needs to be a borrowing rate,
5.00%. Since you do not need the loan over the first three months of the year, the shorter
term spot rate is the lending rate, 3.00%. Thus, the implied forward rate of interest on a
nine-month loan beginning loan beginning in three months is
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0.05(1) - 0.03(0.25) .
foas1 = —555 = 5.667%

In order to structure the forward loan, you must figure out how much to borrow.
Recall that you need to borrow $50,000 in three months and want to repay the loan nine
months later. To provide for the $50,000 cash inflow, you need to lend the present value
of the $50,000 in three months. The rate that you will earn on such a deposit is 3.00%.
The present value of $50,000 received at the end of three months is

50,000 03 25) _ 49 626.40
But where do you get the needed deposit of $49,626.40? The answer is that you borrow that
amount for a year. By borrowing $49,626.40 for one year and lending that same amount for
three months, you have synthetically structured a nine-month forward loan beginning in
three months. The net cash flows of the agreement are certain and are as follows:

Action Today 3 Months 1 Year

Borrow 49,626.40 -52,170.80
Lend -49,626.40  50,000.00

The rate on the forward loan is In(52,170.80/50,000)/0.75 = 5.667%.

STOCK VALUATION

Shares of stock are pieces of the ownership of a corporation. Shareholders
derive value in two ways, through periodic cash dividend payments and through
any price appreciation (or depreciation) that may occur while holding the stock.
Valuing a stock is like valuing a coupon-bearing bond in the sense that both are
present values of expected future cash flow streams. Unlike a bond, however, the
expected periodic cash flows (i.e., dividend payments) are not specified in a con-
tract. Moreover, absent bankruptcy, the life of a stock is infinite.

In the stock valuation problem, the expected future cash flows are cash divi-
dends. We denote D; as the ith future cash dividend, where the dividend stream
continues indefinitely, that is, Dy, Dy, D3, . . . . The time from now until the ith
dividend is received is denoted #;. The current dividend, D, is assumed to have
just been paid. The present value of all expected future cash dividends is

t.

- &
S = 2 De ' (2.41)
i=1

where k is the required rate of return on the stock.'
Equation (2.41) is a stock valuation formula. On first appearance, it may seem
appropriate only for those individuals who plan to hold the stock indefinitely, but

4 For expositional convenience, the rate of return k is assumed to be the same for each cash
dividend payment. There is no reason in principle, however, that the discount rate cannot be
a function of time.
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that is not the case. Even if our anticipated holding period is much shorter, (2.41)
remains an appropriate model. To see this, consider the value that we would
assign the stock if we anticipated selling it after the nth dividend is paid, that is,

t: —kt

n
-k
S=YDe '+S.e " (2.42)

n
i=1

where S, is the expected share price at time #,,. To develop an expectation of the
expected share price at time ¢,, assume that we sell the stock to someone who
plans to hold it indefinitely. The trade price will be

n

_k(t.—
S,= Y De (2.43)

n 1
i=n+1

Substituting (2.43) into (2.42) and simplifying, we are back to (2.41).

Constant Dividend Growth

As a practical matter, the valuation equation (2.41) is difficult to implement since it
requires that we estimate the cash dividend amounts from next period through
infinity. What is more common in practice is to estimate next period’s cash divi-
dend, Dy, and then assume that subsequent dividends grow at a constant rate.
Assuming dividends grow at a continuous constant rate, g, we can rewrite (2.41) as

= —(k-g)t;
§= Y De (2.44)
i=1
As it turns out, (2.44) is the sum of an infinite geometric progression whose
value is easily computed, as is demonstrated in Appendix 2B. The common

ratio, b, in Appendix 2B is b = e ~8), 50 1/b = ¢k ~¢ and the per share value of
the common stock! is

S = (2.45)

ILLUSTRATION 2.14 Value common stock with constant dividend growth.

Suppose you are considering buying a particular stock at its current price of $15 a share. The
stock just paid a dividend of $2 a share. Based upon your historical dividend analysis, you
expect the stock’s dividend to grow at a constant continuous rate of 1% a year indefinitely,

D, =201 fort=1,2,3,...

13 This is one variation of what is often referred to as the Gordon (1962) constant growth
model.
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where the dividends are paid annually. Based on your risk analysis, you believe the
required rate of return for the stock is 12%. Should you buy the stock?

Based on the parameters you have estimated, the stock’s value is

g 2o 2 1
= = 0.12-001 = 17.20
e -1

Consequently, the stock is under-priced and should be purchased.

SUMMARY

Effective risk management requires precise risk measurement, and precise risk
measurement requires a thorough understanding of security valuation. This
chapter provides the foundations of security valuation. The first section dis-
cussed the two key assumptions underlying valuation—the absence of costless
arbitrage opportunities and frictionless markets. The first assumption is predi-
cated on the notion that individuals prefer more wealth to less. It is essential.
The second assumption is one of convenience. It allows security valuation mod-
els to be developed in an unencumbered fashion. We relax this assumption in
various ways as we proceed through the remaining chapters in the book.

The next five sections focus on the time value of money and its implications for
security valuation. The mechanics of continuously compounded interest rates is
provided first, and then the mechanics are applied to security valuation. The third
section focuses on the valuation of, perhaps, the simplest type of security—a dis-
count bond. The value of a discount bond is simply the present value of its prom-
ised payment at maturity. The fourth section focuses on coupon bonds and shows
that they are simply portfolios of discount bonds. In both sections, the valuation
formulas are used to develop the interest rate risk measures of duration and con-
vexity. Since coupon bonds have multiple cash flows through time, the fifth section
addresses the issue of maturity-specific interest rates. Zero-coupon interest rates
are shown to imply forward rates of interest. Finally, the interest rate mechanics
are applied to common stock valuation. The value of a share of stock is shown to
be the present value of an infinite series of expected dividend payments.
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APPENDIX 2A: TAYLOR SERIES EXPANSION OF BOND VALUE

In using the duration and convexity to predict bond price movements, we
implicitly used a Taylor series expansion of the bond valuation formula. From
calculus, we know that most smooth functions f(x) can be expanded in a Taylor
series about the point x,'® that is,

f(x) = f(xo)+@(x—x0)+¥(x—xo)2+i¥;(x—xo)3+
- e ) (2A.1)
= 2 (x—xp)
n=0

In (2A.1), replace x with the yield to maturity of the bond, r, and f(x) with the
bond valuation function, B(r).

APPENDIX 2B: SUM OF A GEOMETRIC PROGRESSION

A geometric progression is a sequence of numbers, a;, i = 1, . . ., n, whose adja-
cent terms satisfy the property that

where b is called the common ratio. The sum of an n element geometric series
whose first element is 1 is

S, = T+b+b s s b" 22" 24 p" ! (2B.1)

While this sum may seem tedious to compute, it may be simplified considerably.
First, multiply (2B.1) by b.

bS, = b+b 4+ b 24 b" b (2B.2)
Now, subtract (2B.2) from (2B.1).

(1-b)S, = 1-b"

16 For the special case where x(, = 0, (A.1) is sometimes called the Maclaurin series of f{x).
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or

1-b"
= 2B.
S, T (2B.3)

Where the number of elements in the series is infinite (i.e., 7 = o) and b < 1, the
sum of the geometric progression is

1
S = — 2B.4
e (2B.4)
If the infinite series begins with b, the sum is
b 1
= —— = 2B.
S 1-b 1/b-1 (2B.5)
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