Bul
Black-

“Because options are specialised and relatively unimportant finan-
cial securities, the amount of time and space devoted to the devel-
opment of a pricing theory might be questioned.” (Robert Merton,
Bell Journal of Economics and Management Science, spring 1973)

wenty-five years ago, no-one — not even, apparent-
ly, one of our recent Nobel Laureates — could have
imagined the changes that were about to occur in
the direction of finance theory and the development
of the financial products industry. The seeds of
change were contained in option valuation research
being conducted by Fischer Black, Robert Merton
and Myron Scholes. The purpose of this article is to
describe how their pioneering work provided the foundation for modern-
day option valuation theory and the structure for financial products whose
notional value now reportedly exceeds $70 trillion worldwide.

Background

aluing claims to income streams is one of the central problems of
VFinance. The exercise is straightforward conceptually — it amounts

to identifying the amount and the timing of the expected cashflows
from holding the claim and then discounting them back to the present. Valu-
ing a European-style call option, therefore, requires that we estimate (a) the
mean of the call option’s payout distribution on the day it expires and (b)
the discount rate to apply to the option’s expected terminal payout.

The first known attempt to value a call option occurred near the turn
of the century. In his dissertation, “Theory of Speculation”, Bachelier (1900)
values a cail option by assuming that the underlying asset price follows
arithmetic Brownian motion. While applying Brownian motion in any con-
text was remarkable for its day', applying it to describe asset price move-

" Samuelson (1965, page 13) notes that Bachefier *...discovered the mathematical
theory of Brownian motion five years before Finstein’s classic paper”

oles

The economic insights of Black, Scholes and Merton laid the
foundations for a quarter-century of theoretical work.
Robert Whaley presents a brief history of option pricing

ments has the unfortunate implication that the asset price may become
negative,

To circumvent this problem, Sprenkle (1961) and Samuelson (1965) at-
tempted to value options under the assumption that asset prices follow geo-
metric Brownian motion. By letting asset prices have multiplicative, rather
than additive, fluctuations through time, the asset price distribution at the
option’s expiry is lognormal, rather than normal, and the prospect of the
asset price becoming negative is eliminated. Under lognormality, Sprenkle
and Samuelson showed that the call option valuation formuia has the form:

o = e7<T[Se TN (dy) - XN(cy)] (1)
where:
. In(S / X) + (a5 +0502)T
1T oJT

and ¢, and 0., are the expected risk-adjusted rates of price appreciation for
the asset and the call respectively, & is the asset’s volatility rate, S is the
current asset price, X is the option’s exercise price and T is the option’s time
to expiry. The expression N(.} is the cumulative univariate normal proba-
bility function.

The structure of (1) shows that the call option’s value is the present value
of its expected terminal value. The expected terminal value depends on var-
ious factors, including the expected growth rate of the asset price, o,. The
call is a claim ro buy the asset, and the expected asset price at the option's
expiry is $5€%'. The expression Se*™N(d,) is the expected asset price, con-
ditional on the asset price exceeding the exercise price at the option’s ex-
piry. The expression XN(dz) is the expected exercise cost, ie, the exercise
price multiplied by the probability that the option will be exercised.

As elegant and precise as formula (1) appears, it is not very useful. To
implement the formula requires estimates of the risk-adjusted rates of price
appreciation for both the asset and the option. To estimate these values

,d2=d1—0‘ﬁ
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precisely is problematic. Moreover, as if the estimation problems are not
vexing enough. one must still consider the fact that the return of the call
depends on the asset’s return as well as the passage of time.

The Black-Scholes-Merton theory
he Sprenkle/Samuelson contributions set the stage. The break-
I through came in the early 1970s. Black & Scholes (1973) and Mer-
ton (1973) showed that, as long as a risk-free hedge may be formed
between the option and its underlying asset, the value of an option rela-
tive to the asset will be the same for all investors, regardless of their risk
preferences.

The intition underlying the risk-free hedge argument is simple. Con-
sider an at-the-money European-style call option that allows its holder to
buy one unit of an asset in one month at an exercise price of $40. For the
sake of simplicity, suppose that, at the end of one month, the asset price
will be either $45 or $35. Now, consider selling call options against the unit
investment in the assel. At the end of the month, each call will have a value
of 85 or $0. depending on whether the asset price is $45 or $35. Under this
scenario, selling two call options against each unit of the asset will create a
terminal portfolio value of $33, regardless of the level of asset price. Since
the terminal portfolio vaiue is certain, the value of the portfolio today must
be $35 discounted at the risk-free rate of interest. If the risk-free rate of in-
terest is 1%. the current value of the portfolio must be $34.65, and the cur-
rent value of the call $2.673, ie, ($40-34.65)/2. If the observed price of the
call is above (below) its theoretical level of $2.675, risk-free arbitrage prof-
its are possible by selling the call and buying (selling) a portfolio consisting
of a long position in a half unit of the asset and a short position of $17.325
in risk-free bonds. In equilibrium, no such arbitrage opportunities can exist.

The Black-Scholes-Merton (BSM) model is the continuous-time analogue
of this illustration. If the asset price follows geometric Brownian motion, a
risk-free hedge can be formed between the option and its underlying asset,
implying that the payout of a European-style call can be identically dupli-
cated by a portfolio consisting of the asset and risk-free bonds.? Put sim-
ply, option value does not depend on the asset's expected return and is
therefore independent of investor risk preferences. The value of an option
is the same for a risk-neutral investor as it is for a risk-averse investor. With-
out loss of generality, therefore, options can be valued in a risk-neutral
world where expected asset returns and expected option returns all equal
the risk-free rate of interest.

Analytical formulas
he BSM option valuation theory goes well beyond the “formula” bear-
I ing their names. Their key economic insight is that if a risk-free hedge
between the option and its underlying asset may be formed, risk-
neutral valuation may be applied. This applies to any option. Sometimes the
option’s payout contingencies are sufficiently straightforward that an analyt-
ical formulia for the option's value can be found. This is the case for the “BSM
formula”, which provides the value of a standard European-style call option.
Options with analytical formulas are the focus of this section. Sometimes the
option’s payout contingencies are so complex that analytical solutions are
not possible. In these cases, the BSM theory continues to apply, although
option values must be calculated numerically. Numerical methods, as ap-
plied to option valuation problems, are the focus of the next section.

The BSM formula for a European-style call follows directly from the work
of Sprenkle and Samuelson. In a risk-neutral world, all assets (including op-
tions) have an expected rate of return equal to the risk-free interest rate, r.
That is not to say, however, that all assets have the same expected rate of
price appreciation. Some assets pay out income in the form of dividends or
coupon interest. If the asset’s income is modelled as a constant, continuous

2 This “law of one price" argument is no stranger to financial economics. It is the
fundamental theoretical underpinning of the Nobel! prize-winning corporate finance
theory of Modigliani & Miller (1958) and Miller & Modigliani (1961)

proportion of the asset price, the expected rate of price appreciation on the
asset, denoted b, equals the interest rate less the cash disbursement rate.

Retaining the assumption of risk-neutrality, we now return to formula
(1) and substitute appropriate price appreciation rates. The expected rate
of price appreciation of the call, &, is set equal to the risk-free rate, r, since
options are not income-producing assets. The expected rate of price ap-
preciation of the asset, 0., is set equal to b. The BSM formula for the value
of a European-style call option is:

o =eM[se"N(dy) - XN(cy)| 2)

Note that with (2), there is no need either to estimate the risk premiums
of the call and the asset or to model how the call’s risk premium changes
through time.

The BSM formula covers a wide range of underlying assets. The dis-
tinction between the valuation problems described below rests in the asset’s
risk-neutral price appreciation parameter, b.

O Non-dividend-paying stock options. The most well-known option valu-
ation problem is that of valuing options on non-dividend-paying stocks.
This is, in fact, the valuation problem addressed by Black & Scholes (1973).
With no dividends paid on the underlying stock, the expected price ap-
preciation rate of the stock equals the risk-free rate of interest, and the call
option valuation equation becomes the familiar “Black-Scholes formula™

¢ = SN{dy) ~ Xe™™N(dy)
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(1 Constant-dividend-yield stock options. Merton (1973) generalises stock
option valuation by assuming that stocks pay dividends at a constant, con-
tinuous dividend yield. The “Merton model” is simply equation (2), re-
placing b with the difference between the risk-free rate and the stock’s
dividend yield rate.

O Futures options. Black (1976) values options on futures. In a risk-neu-
wral world with constant interest rates, the expected rate of price appreci-
ation on a futures contract. because it involves no cash outlay, is zero.
Substituting into (2) provides what is commonly known in the futures in-
dustry as the “Black model”.

O3 Futures-style futures options. Following the work of Black, Asay (1982)
values futures-style futures options. Such options trade on various ex-
changes, including the London International Financial Futures and Options
Exchange, and have the distinguishing feature that the option premium is
-not paid upfront. Instead. the option position is marked to market in the
same manner as the underlying futures. To value this option, we not only
set b = O inside the square brackets to reflect the zero expected rate of
price appreciation on the futures. but also set r = O outside the square
brackets because an option requiring zero investment upfront must have
an expected price appreciation equal to zero. The resulting formula is
called the “Asay model”.

{J Foreign currency options. Finally. Garman & Kohlhagen (1983) value
options on foreign currency. Here. the e:fpccled rate of price appreciation
of a foreign currency equals the domestic rate of interest less the foreign
rate of interest. Substituting equation (2) becomes the "Garman-Kohlha-

gen model”. Earlier, we identified the key contribution of the BSM model
as being the recognition that a risk-free hedge can be formed between the
option and the underlying asset. Consequently, the payouts of a call op-
tion can be replicated with a portfolio consisting of the asset and some
risk-free bonds. )

The BSM formula provides the composition of the asset/bond portfo-

lio that mimics the payouts of the call. To replicate a long call position, we
buy e®""N(d,) units of the asset, each unit with price S, and sell N(d,)
units of risk-free bonds, each unit with price Xe~T. As time passes and the
asset price moves, the units invested in the asset and risk-free bonds will
change. But, with continuous rebalancing, the portfolio’s payouts will be
identical 1o those of the call.
O Dynamic portfolio insurance’. Dynamic replication is at the heart of one
of the most popular financial products of the 1980s - dynamic portfolio
insurance. Because long-term index put options were not traded at the
time, stock portfolio managers had to create their own insurance by dy-
namically rebalancing a portfolio consisting of stocks and risk-free bonds.
The mechanism for identifying the portfolio weights is given by the BSM
put option formula:

p = Xe~MN(~d2) - Selt=NN(—ds)

The objective is to create an “insured” portfolio whose payouts mimic
the portfolio Se®-"T+p. Substituting the BSM put formula, we find:

| 3 For a lucid description of portfolio insurance, see Rubinstein (1 985}
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5™ 1 p = el + Xe™™N(-dz) - Sel®T™N(~cy)
= 5e®ITN(d; ) + Xe™™N(-d2)

Hence, a dynamically insured portfoiio has e®%"N(d,) units of stocks and
N(-d,) units of risk-free bonds. The weights show that as stock prices rise,
funds are transferred from bonds to stocks and vice versa.

T The first exotic option? The valuation-by-replication technique can also
be applied in a static context. Indeed, many multiple contingency finan-
cial products such as caps, collars and floors are valued as portfolios of
standard options. Before considering such “exotics”, however, it is worth-
while to note that a standard call option s, itself, exotic. Consider a port-
folio that consists of (a) a long position in an asset-or-nothing call that pays
the asset price at expiry if the asset price exceeds X and (b) a short posi-
tion in a cash-or-nothing call that pays X if the asset price exceeds X.* Under
the assumptions of risk-neutrality and lognormally distributed asset prices,
the value of the asset-or-nothing call is Se®7"N{d,), and the value of the
cash-or-nothing call option is Xe™"N(d,}. Combining these option values,
we get the BSM formula (2).

The BSM option valuation framework has been extended in several im-
portant ways. Some involve more complex claims on a single underlying
asset. Here, we focus on the valuation of such claims. Others, which we
examine below, involve claims on two or more underlying assets.

T Compound options. An important extension of the BSM model that falls
in the single underlying asset category is the compound option valuation
theory developed by Geske (1979a). Compound options are options on
options. A call on a call, for example, provides its holder with the right to
buy a call on the underlying asset at some future date. Geske shows that,
if these options are European-style, valuation formulas can be derived.
T American-style call options on dividend-paying stocks. The Geske (19792)
compound option model has been applied in other contexts. Roll (1977),
Geske (1979b) and Whaley (1981), for example, develop a formula for
valuing an American-style call option on a stock with known discrete div-
idends. If a stock pays a cash dividend during the call's life, it may be op-
timal to exercise the call early, just prior to dividend payment. An
American-style call on a dividend-paying stock, therefore, can be modelled
as a compound option providing its holder with the right, on the ex-divi-
dend date, either to exercise early and collect the dividend, or to leave the
position open.

{J Chooser options. Rubinstein (1991) uses the compound option frame-
work to value the “chooser” or “as-you-like-it” options traded in the over-
the-counter market. The holder of a chooser option has the right to decide
at some future date whether the option.is a call or a put. The call and
the put usually have the same exercise price and the same time remain-
ing to expiry.

O Bear market warrants with a periodic reset. Gray & Whaley (1997) use
the compound option framework to value yet another type of contingent
claim, S&P 500 bear market warrants with a periodic reset traded at the
Chicago Board Options Exchange and the New York Stock Exchange. The
warrants are originally issued as at-the-money put options but have the dis-
tinguishing feature that if the underlying index level is above the original
exercise on some pre-specified future date, the exercise price of the war-
rant is reset at the then-prevailing index level. These warrants offer an in-
triguing form of portfolio insurance whose floor value adjusts automatically
as the index level rises. The structure of the valuation problem is again a
compound option, and Gray & Whaley provide the valuation formula.

O Lookback options. A lookback option is another exotic that has only
one underlying source of price uncertainty. Such an option’s exercise
price is determined at the end of the its life. For a call, the exercise price
is set equal to the lowest price that the asset reached during the life of
the option; for a put, the exercise price equals the highest asset price.
These “buy at the low” and “sell at the high” options can be valued an-
alytically. Formulas are provided in Goldman, Sosin & Gatto (1979).

O Barrier options. Barrier options are the final type of option in this cate-
gory that I will discuss. Barrier options are options that either cease 1o exist
or come into existence when some pre-defined asset price barrier is hit
during the option’s life. A down-and-out call, for example, is a call that
gets "knocked out” when the asset price falls to some pre-specified level
prior to the option’s expiry. Rubinstein & Reiner (1991) provide valuation
equations for a large family of barrier options.

The BSM option valuation framework has also been extended 1o in-
clude multiple underlying assets. As long as each asset is traded, the BSM
risk-free hedge argument remains intact and risk-neutral valuation is per-
mitted without loss of generality.

0 Exchange options. The first important development along this line was
by Margrabe (1978). He derives a valuation formula for an exchange op-
tion, ie, the right to exchange one risky asset or asset for another. The BSM
formula is a special case of the Margrabe formula in the sense that if the
call is in-the-money at expiry the option holder exchanges risk-free bonds
for the asset.

0 Options on the minimum and the maximum. Stulz (1982) and Johnson
(1987) derive valuation formulas for options on the maximum and the min-
imum of two or more risky assets. Many of the exchange-traded futures
contracts can be valued as an option on the minimum. The Chicago Board
of Trade’s Treasury bond futures, for example, provide the seller with the
right to deliver the cheapest of a number of deliverable T-bond issues.

Approximation methods

any option valuation problems do not have explicit closed-form

solutions. Probably the best known example is the valuation of

American-style options. With American-style options, the op-
tion holder has an infinite number of exercise opportunities between the
current date and the option’s expiry date, making the problem intractable
from a mathematical standpoint.” But many other examples exist. Hun-
dreds of different types of exotic options trade in the OTC market. and
many, if not most, do not have analytical formulas. Nonetheless, they can
all be valued accurately using the BSM model. If a risk-free hedge can be
formed between the option and the underlying asset, the BSM risk-neutral
valuation theory can be applied, albeit through the use of numerical meth-
ods. Below, I describe three types of commonly-applied approximation
methods.

A number of numerical methods for valuing options are lattice-based.
These methods replace the BSM assumption that asset price moves
smoothly and continuously through time with an assumption that the
asset price moves in discrete jumps over discrete intervals during the op-
tion’s life.

O Binomial method. Perhaps the best-known lattice-based method is the
binomial method, developed independently by Cox, Ross & Rubinstein
(1979) and Rendleman & Bartter (1979). In the binomial method, the asset
price jumps up or down, by a fixed proportion, at each of a number of
discrete time steps during the option’s life. The length of each time step.
At, is determined when the user specifies the number of time steps, n, ie.
At = T/n. The greater the number of time steps, the more precise the
method. The cost of the increased precision, however, is computational
speed. With n time steps, 2" asset price paths over the life of the option
are considered. With 20 time steps, this means more than 1 million paths.

In describing the steps of the binomial method, 1 will use, as a running
illustration, the valuation of an American-style option. The first step of the
binomia! method is to enumerate the possible paths that the asset price
may take between now and the option's expiry. The up-step and down-
step coefficients, u and d, and their respective probabilities of an up-step

4 Asset-or-nothing and cash-or-nothing options are commonly referred to as "binary ‘
or “digital” options, and, themseives, are generally considered to be “exotics”

5 An exception is, of course, an American-style call option on an asset whose risk-
neutral rate of price appreciation is greater than or equal to the risk-free rate of interesi
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Binomial tree

and a down-step, p, and py, are set in such a manner that (a) the mean
and variance of the discrete distribution are equal to the mean and the
variance of the lognormal distribution, (b) the asset price tree “recom-
bines”, and (c) the probabilities of an up-step and a down-step add up to
one. One set of coefficients and probabilities that satisfies these condi-
tions is:

u=e%V2 g=1/yp, = (et -d)/(u—d),pd =1-py

The enumeration procedure begins with the current asset price and moves
forward through time. With n time steps, there will be n+1 terminal asset
price nodes, as shown in the figure.

The procedure then moves to the end of the option’s life and begins to
work backwards. At the end of the option’s life, the option value at each
asset price node is simply the option’s intrinsic value. Once the option val-
ues at all nodes at time n are identified, the procedure steps backward one
time step.

At time n-1, the value of the option at each node is calculated by tak-
ing the present value of the expected future value of the option. The ex-
pected future value is simply the probability of an up-step times the option’s
value if the asset price steps up plus the probability of a down-step times
the option’s value if the asset price steps down. The discount rate in the
present value computation is the risk-free rate of interest, as we continue
to operate within the Black-Scholes-Merton framework.

Before proceeding back another time step, it is necessary to check if
any of the calculated option values at time n-1 are below their early-ex-
ercise proceeds. Since we know the asset price underlying each calculat-
ed option price, it is a small matter to compare the computed option value

with the option's early exercise proceeds at each node. If the early exer-
cise proceeds exceed the calculated value, we replace the calculated value
with the exercise proceeds. The interpretation is, of course, that if the op-
tion holder finds himself standing at that time in the option's life with the
underlying asset priced at that level, he will exercise his option. If pro-
ceeds are less, the calculated value is left undisturbed. Note that, if the
check of the early exercise condition is not performed, the binomial method
will produce an approximate value for a European-style option.®

The procedure now takes another step back in time, repeats the cal-
culations of all nodes, and then checks for early exercise. The procedure
is repeated again and again until only a single node remains at time 0. This
node will contain the value of the American-style option, as approximat-
ed by the binomial method.

The binomial method has wide applicability. Aside from the American-
style option feature, which is easily incorporated within the framework,
the binomial method can be used to value many types of exotic options.
Knock-out options, for example, can be valued using this technique. We
simply impose a different check on the calculated option values at the
nodes of the intermediate time steps between O and n, ie, if the underly-
ing asset price falls below the option’s barrier, the option value at that
node is set equal to zero. The method can also be extended to handle
multiple sources of asset price uncertainty. Boyle, Evnine & Gibbs (1989)
adapt the binomial procedure to handle exotics with multiple sources of
uncertainty, including options on the minimum and maximum, spread
options and so on.

O Trinomial metbod, The trinomial method is another popular lattice-based
method. As cutlined by Boyle (1988), this allows the asset to move up,
down or stay the same at each time increment. Again, the parameters of
the discrete distribution are chosen in a manner consistent with the log-
normal distribution, and the procedure begins at the end of the option’s
life and works backward. By having three branches instead of two, the tri-
nomial method provides greater accuracy than the binomial method for a
given number of time steps. The cost is, of course, that the greater the
number of branches, the slower the computational speed.

O Finite difference method. The explicit finite difference method was the
first lattice-based procedure to be applied to option valuation. Schwartz
(1977) applied it to value warrants and Brennan & Schwartz (1977) ap-
plied it to value American-style put options on common stocks. The fi-
nite difference method is similar to the trinomial method in the sense that
the asset price moves up, down or stays the same at each time step dur-
ing the option’s life. The difference in the techniques arises only from
how the price increments and the probabilities are set. In addition, finite
difference methods calculate an entire rectangle of node values rather
than simply a tree.

Boyle (1977) introduces Monte Carlo simulation to value options. Like

6 Indeed, a useful way to gauge the approximation error of the varous numerical
methods is to implement them on vaiuation probiems for which there is an analyticat
formula
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the lattice-based procedures, the technique involves simulating possible
paths that the asset price may take over the life of the option. And, again,
the simulation is performed in a manner consistent with the lognormal
asset price process. To value a European-style option, each sample run is
used to produce a terminal asset price, which, in turn, is used to deter-
mine the terminal option value. With repeated sample runs, a distribution
of terminal options values is obtained, and the expected terminal option
value may be calculated. This expected value is then discounted to the
present to value the option, An advantage of the Monte Carlo method is
that the degree of valuation error can be assessed directly using the stan-
dard error of the estimate. The standard error equals the standard devia-
tion of the terminal option values divided by the square root of the number
of trials.

Another advantage of the Monte Carlo technique is its flexibility. Since
the path of the asset price beginning at time 0 and continuing through the
life of the option is observed, the technique is well-suited for handling bar-

rier-style options, Asian-style options, Bermuda-style options and the like.
Moreover, it can easily be adapted to handle multiple sources of price un-
certainty. The technique's chief disadvantage is that it can be applied only
when the option payout does not depend on its value at future points in
time. This eliminates the possibility of applying the technique to Ameri-
can-style option valuation, where the decision to exercise early depends
on the value of the option that will be forfeit.

[} Compound option approximation. The quasi-analytical methods for op-
tion valuation are quite different from the procedures that attempt to de-
scribe asset price paths. Geske & Johnson (1984), for example, use a Geske
(1979a) compound option model to develop an approximate value for an
American-style option. The approach is intuitively appealing. An Ameri-
can-style option, after all, is a compound option with an infinite number
of early exercise opportunities. While valuing an option in this way makes
intuitive sense, the problem is intractable from a computational standpoint.
The Geske-Johnson insight is that, although we cannot value an option
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Options

with an infinite number of early exercise opportunities, we can extrapo-
late its value by valuing 2 sequence of “pseudo-American” options with
zero, one, two and perhaps more early exercise opportunities at discrete,
equally spaced intervals during the option’s life. The advantage that this
offers is that each of these options can be valued analytically. With each
new option added to the sequence, however, the valuation of a higher-
order multivariate normal integral is required. With no early exercise op-
portunities, only a univariate function is required, however; with one early
exercise opportunity, a bivariate function is required, with two opportu-
nities, a trivariate, and so on. The more of these options used in the se-
ries, the greater the precision in approximating the limiting value of the
sequence. The cost of increased precision is that higher-order multivariate
integral valuations are time-consuming computationally.

O Quadratic approximation. Barone-Adesi & Whaley (1987) present a qua-
dratic approximation. Their approach, based on the work of MacMillan
(1986), separates the value of an American-style option into two compo-
nents: the European-style option value and an early exercise premium.
Since the BSM formula provides the value of the European-style option,
they focus on approximating the value of the early exercise premium. By
imposing a subtle change to the BSM partial differential equation, they ob-
tain an analytical expression for the early exercise premium, which they
then add to the European-style option value, thereby providing an ap-
proximation of the American-style option value, The advantage of the qua-
dratic approximation method are speed and accuracy.

For many years, the search for quasi-analytical approximations was an
important research pursuit. Using lattice-based procedures or Monte Carlo
simulation was impractical in real-time applications. This pursuit has be-
come much less critical, thanks to Moore’s Law. In April 1965, Gordon
Moore, an engineer and co-founder of Intel, predicted that integrated cir-
cuit complexity would double every two years. The prediction has been
surprisingly accurate. In the late 1970s, when the lattice-based and Monte
Carlo simulation methods were first applied to option valuation problems,
Intel's most advanced microprocessor technology was the 8086 chip. Today,
the Pentium Pro microprocessor is more than 1,000 times faster, and the
impracticality of lattice-based and simulation-based methods has been sub-
stantially reduced.

Generalisations
he generalisations of the BSM option valuation theory focus on the
I assumed asset price dynamics. Some examine the valuation impli-
cations of modelling the local volatility rate as a deterministic func-
tion of the asset price or time or both. Others examine the valuation
implications when volatility, like asset price, is stochastic.

Under the assumption that the local volatility rate is a deterministic func-
tion of time or the asset price or both, the BSM risk-free hedge mechanics
are preserved so risk-neutral valuation remains possible. The simplest in
this class of models is the case where the local volatility rate is a deter-
ministic function of time. For this case, Merton (1973) shows that the val-
uation equation for a European-style call option is the BSM formula (2),
where the volatility parameter is the average local volatility rate over the
life of the option.

Other models focus on the relation between asset price and volatility
and attempt to account for the empirical fact that, in at least some mar-
kets, volatility varies inversely with the level of asset price. One such model
is the constant elasticity of variance model proposed by Cox & Ross (1976).
In this model, asset price volatility is 65%%, where a falls in the range 0 <
a < 1. Where a = 1, volatility is constant, and a European-style call option
can be valued analytically using the BSM formula (2). Where a = 0, volatil-
ity is inversely proportional to the asset price, and a European-style call
option can also be valued analytically using a formula called the “absolute
diffusion model”.” For the general case where 0 < a < 1, analytical so-
lutions are not possible; however, valuation can be handled straightfor-
wardly using lattice-based or Monte Carlo simulation procedures.

Recently, Derman & Kani (1994), Dupire (1994) and Rubinstein (1994
developed a valuation framework in which the local volatility rate is a de-
terministic, but unspecified, function of asset price and time. If the speci-
fication of the volatility function is known, any of the lattice-based or
simulation procedures can be applied to value options. Unfortunately, the
structural form is not known.®

To circumvent this problem, these authors parameterise their model
by searching for a binomial or trinomial lattice that achieves an exact cross-
sectional fit of reported option prices. An exact cross-sectional fit is al-
ways possible because there are as many degrees of freedom in defining
the lattice (and, hence, the local volatility rate function) as there are op-
tion prices. With the structure of the “implied-tree” identified, it becomes
possible to value other, more exotic, OTC options and 1o refine hedge
ratio computations.

The effects of stochastic volatility on option valuation are modelled by
either superimposing jumps on the asset price process, allowing volatility
to have its own diffusion process, or both. Unfortunately, the introduction
of stochastic volatility negates the BSM risk-free hedge argument because
volatility movements cannot be hedged. An exception to this rule is Mer-
ton (1976), who adds a jump term to the usual geometric Brownian mo-
tion governing asset price dynamics. By assuming that the jump component
of an asset's return is unsystematic, Merton can create a risk-free portfolio
in the BSM sense and apply risk-neutral valuation. Indeed, for European-
style options, he finds analytical valuation formulas. If the jump risk is sys-
tematic, however, the BSM risk-free hedge cannot be formed, and option
valuation will be utility-dependent.

A number of authors model asset price and asset price volatility as sep-
arate, but correlated, diffusion processes. Asset price is usually assumed
to follow geometric Brownian motion. The assumptions governing volatil-
ity vary. Hull & White (1987), for example, assume volatility follows geo-
metric Brownian motion. Scott (1987) models volatility using a
mean-reverting process and Wiggins (1987) uses a general Wiener process.
Bates (1996) combines both jump and volatility diffusions in valuing for-
eign currency options. Except in the uninteresting case where asset price
and volatility movements are independent, these models require the esti-
mation of risk premiums.

The problem when volatility is stochastic is that a risk-free hedge can-
not be created since volatility is not a traded asset. But, perhaps, this prob-
lem is only temporary. Derivatives contracts on volatility have been
discussed in a variety of forums*, and, indeed, an option on the VDax
(Volatility Dax) is to be introduced at the Deutsche Terminbdrse in Janu-
ary 1998. The critical issue is, of course, the “correct” contract design.

Summary
his article organises and highlights some of the important option
I valuation research contributions of the past 25 years. All of them
build upon the simple, but powerful, risk-free hedge insight in the
work of Black & Scholes (1973) and Merton (1973). That the Nobel com-
mittee has finally recognised the brilliance of their work is commendable.
Sadly, I am reminded of a single, prophetic statement: “Like many great
inventions, it started with some tinkering and ended with delayed recog-
nition.” (Fischer Black, journal of Portfolio Management, spring 1989.) B
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7 See Cox & Ross (1976} .

8 Durnas, Fleming & Whaley (1998} implement the deterministic vola tility function
option valuation model by expanding the local volatiity rate function in a Taylor series
and estimating the parameters of the function diractly

9 Sag, for example, Whaley (1993)
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