Markets and applications

Stock index derivatives

- □ Purpose:
 - Describe stock index derivatives markets.
 - Apply index derivatives for managing return/risk.
- **Outline**:
 - History of stock index products
 - Stock index construction
 - Index arbitrage
 - Hedging stock market risk

- □ History of listings in US
 - Value Line futures
 - □ Kansas City Board of Trade in February 1982
 - S&P 500 futures
 - □ Chicago Mercantile Exchange in April 1982
 - Major Market Index futures
 - □ Chicago Board of Trade in July 1984
 - DJIA futures
 - □ Chicago Board of Trade in October 1997

- □ History of listings in other countries
 - All Ordinaries
 - □ SFE in February 1983
 - **TSE 300**
 - **TSE** in January 1984
 - FT-SE 100
 - □ LIFFE in May 1984
 - BOVESPA
 - **BOVESPA** in February 1986

- Major derivatives exchanges often have futures contracts on multiple indexes.
 - "First-mover" usually gathers lion's share of trading volume.
 - One index is preeminent.
 - US: S&P 500
 - Europe: Euro Stoxx 50

- □ Stock index futures
 - Dominant US exchange is CME Group
 - □ <u>https://www.cmegroup.com/trading/products/</u>

			Open	
Product name	Index	Volume	interest	Turnover
E-mini S&P 500 Futures	US	1,466,350	2,762,774	53.1%
E-mini Russell 2000 Index Futures	US	116,286	490,965	23.7%
<u>S&P 500 Total Return Index Futures</u>	US	3,000	272,701	1.1%
<u>E-mini Nasdaq-100 Futures</u>	US	545,487	206,243	264.5%
E-mini Dow (\$5) Futures	US	238,563	104,903	227.4%
S&P 500 Annual Dividend Index Futures	US	3,786	92,798	4.1%
E-mini S&P MidCap 400 Futures	US	11,871	78,286	15.2%
Micro E-mini S&P 500 Index Futures	US	291,768	56,399	517.3%
<u>Nikkei/Yen Futures</u>	International	49,610	54,924	90.3%
Dow Jones Real Estate Futures	US	757	40,410	1.9%
<u>Micro E-mini Nasdaq-100 Index Futures</u>	US	256,361	38,119	672.5%
<u>S&P 500 Futures</u>	US	1,640	37,628	4.4%
E-mini Financial Select Sector Futures	Select Sector	1,267	31,965	4.0%

Highest open interest.

			Open	
Product name	Index	Volume	interest	Turnover
E-mini S&P 500 Futures	US	1,466,350	2,762,774	53.1%
E-mini Russell 2000 Index Futures	US	116,286	490,965	23.7%
<u>S&P 500 Total Return Index Futures</u>	US	3,000	272,701	1.1%
<u>E-mini Nasdaq-100 Futures</u>	US	545,487	206,243	264.5%
E-mini Dow (\$5) Futures	US	238,563	104,903	227.4%
S&P 500 Annual Dividend Index Futures	US	3,786	92,798	4.1%
E-mini S&P MidCap 400 Futures	US	11,871	78,286	15.2%
Micro E-mini S&P 500 Index Futures	US	291,768	56,399	517.3%
<u>Nikkei/Yen Futures</u>	International	49,610	54,924	90.3%
Dow Jones Real Estate Futures	US	757	40,410	1.9%
Micro E-mini Nasdaq-100 Index Futures	US	256,361		672.5%
<u>S&P 500 Futures</u>	US	1,640	37,628	4.4%
E-mini Financial Select Sector Futures	Select Sector	1,267	31,965	4.0%

Pit-traded contract is 5 times size.

			Open	
Product name	Index	Volume	interest	Turnover
E-mini S&P 500 Futures	US	1,466,350	2,762,774	53.1%
E-mini Russell 2000 Index Futures	US	116,286	490,965	23.7%
S&P 500 Total Return Index Futures	US	3,000	272,701	1.1%
E-mini Nasdaq-100 Futures	US	545,487	206,243	264.5%
E-mini Dow (\$5) Futures	US	238,563	104,903	227.4%
S&P 500 Annual Dividend Index Futures	US	3,786	92,798	4.1%
E-mini S&P MidCap 400 Futures	US	11,871	78,286	15.2%
Micro E-mini S&P 500 Index Futures	US	291,768	56,399	517.3%
Nikkei/Yen Futures	International	49,610	54,924	90.3%
Dow Jones Real Estate Futures	US	757	40,410	1.9%
Micro E-mini Nasdaq-100 Index Futures	US	256,361	38,119	672.5%
<u>S&P 500 Futures</u>	US	1,640	37,628	4.4%
E-mini Financial Select Sector Futures	Select Sector	1,267	31,965	4.0%

Variety of different stock indexes

			Open	
Product name	Index	Volume	interest	Turnover
E-mini S&P 500 Futures	US	1,466,350	2,762,774	53.1%
E-mini Russell 2000 Index Futures	US	116,286	490,965	23.7%
S&P 500 Total Return Index Futures	US	3,000	272,701	1.1%
E-mini Nasdaq-100 Futures	US	545,487	206,243	264.5%
E-mini Dow (\$5) Futures	US	238,563	104,903	227.4%
S&P 500 Annual Dividend Index Futures	US	3,786	92,798	4.1%
E-mini S&P MidCap 400 Futures	US	11,871	78,286	15.2%
Micro E-mini S&P 500 Index Futures	US	291,768	56,399	517.3%
Nikkei/Yen Futures	International	49,610	54,924	90.3%
Dow Jones Real Estate Futures	US	757	40,410	1.9%
Micro E-mini Nasdaq-100 Index Futures	US	256,361	38,119	672.5%
<u>S&P 500 Futures</u>	US	1,640	37,628	4.4%
E-mini Financial Select Sector Futures	Select Sector	1,267	31,965	4.0%

Major US stock indexes, international indexes, sector indexes

			Open	
Product name	Index	Volume	interest	Turnover
E-mini S&P 500 Futures	US	1,466,350	2,762,774	53.1%
E-mini Russell 2000 Index Futures	US	116,286	490,965	23.7%
<u>S&P 500 Total Return Index Futures</u>	US	3,000	272,701	1.1%
<u>E-mini Nasdaq-100 Futures</u>	US	545,487	206,243	264.5%
<u>E-mini Dow (\$5) Futures</u>	US	238,563	104,903	227.4%
S&P 500 Annual Dividend Index Futures	US	3,786	92,798	4.1%
E-mini S&P MidCap 400 Futures	US	11,871	78,286	15.2%
Micro E-mini S&P 500 Index Futures	US	291,768	56,399	517.3%
<u>Nikkei/Yen Futures</u>	International	49,610	54,924	90.3%
Dow Jones Real Estate Futures	US	757	40,410	1.9%
Micro E-mini Nasdaq-100 Index Futures	US	256,361	38,119	672.5%
<u>S&P 500 Futures</u>	US	1,640	37,628	4.4%
E-mini Financial Select Sector Futures	Select Sector	1,267	31,965	4.0%

Low values are buy-and-hold futures. High values are day-trading futures.

- □ <u>Supporting file</u>: Index return statistics.xlsx
 - Downloaded daily data from Datastream for period 20091231 through 20191231.
 - □ Eliminated non-trading days.

Summ	ary statistic	es of daily in	dex returns	for period	20091231 th	rough 2019	2131
_	S&P 500	RUSS2000	Nasdaq 100	Dow	Midcap 400	DJ RE	S&P Fin
n	2,516	2,516	2,516	2,516	2,516	2,516	2,516
Mean	0.000483	0.000504	0.000711	0.000465	0.000528	0.000365	0.000498
StDev	0.009953	0.013373	0.010964	0.009288	0.011610	0.015936	0.016699
Skewness	-0.315213	-0.135942	-0.245333	-0.298776	-0.283405	0.373483	0.446630
Minimum	-0.068958	-0.093317	-0.063053	-0.057061	-0.086123	-0.115888	-0.121282
Median	0.000362	0.000554	0.000773	0.000374	0.000606	0.000382	0.000273
Maximum	0.068366	0.080660	0.063621	0.066116	0.071101	0.152206	0.163312
CAGR Volalitily	12.93% 15.80%	13.54% 21.23%	<u>19.63%</u> 17.41%	12.42% 14.74%	14.24% 18.43%	9.64% 25.30%	13.37% 26.51%
HPR	236.70%	255.43%	498.47%	221.85%	277.74%	150.62%	249.93%

Nasdaq had highest price appreciation.

Summ	Summary statistics of daily index returns for period 20091231 through 20192131								
	S&P 500	RUSS2000	Nasdaq 100	Dow	Midcap 400	DJ RE	S&P Fin		
n	2,516	2,516	2,516	2,516	2,516	2,516	2,516		
Mean	0.000483	0.000504	0.000711	0.000465	0.000528	0.000365	0.000498		
StDev	0.009953	0.013373	0.010964	0.009288	0.011610	0.015936	0.016699		
Skewness	-0.315213	-0.135942	-0.245333	-0.298776	-0.283405	0.373483	0.446630		
Minimum	-0.068958	-0.093317	-0.063053	-0.057061	-0.086123	-0.115888	-0.121282		
Median	0.000362	0.000554	0.000773	0.000374	0.000606	0.000382	0.000273		
Maximum	0.068366	0.080660	0.063621	0.066116	0.071101	0.152206	0.163312		
CAGR	12.93%	13.54%	19.63%	12.42%	14.24%	9.64%	13.37%		
Volalitily	15.80%	21.23%	17.41%	14.74%	18.43%	25.30%	26.51%		
HPR	236.70%	255.43%	498.47%	221.85%	277.74%	150.62%	249.93%		

S&P Financial Sector index had highest volatility.

Summ	ary statistic	es of daily in	dex returns	for period	20091231 th	rough 2019	2131
_	S&P 500	RUSS2000	Nasdaq 100	Dow	Midcap 400	DJ RE	S&P Fin
n	2,516	2,516	2,516	2,516	2,516	2,516	2,516
Mean	0.000483	0.000504	0.000711	0.000465	0.000528	0.000365	0.000498
StDev	0.009953	0.013373	0.010964	0.009288	0.011610	0.015936	0.016699
Skewness	-0.315213	-0.135942	-0.245333	-0.298776	-0.283405	0.373483	0.446630
Minimum	-0.068958	-0.093317	-0.063053	-0.057061	-0.086123	-0.115888	-0.121282
Median	0.000362	0.000554	0.000773	0.000374	0.000606	0.000382	0.000273
Maximum	0.068366	0.080660	0.063621	0.066116	0.071101	0.152206	0.163312
CAGR	12.93%	13.54%	19.63%	12.42%	14.24%	9.64%	13.37%
Volalitily	15.80%	21.23%	17.41%	14.74%	18.43%	25.30%	26.51%
HPR	236.70%	255.43%	498.47%	221.85%	277.74%	150.62%	249.93%

Major indexes had negative skewness.

Summary statistics of daily index returns for period 20091231 through 20192131							
- -	S&P 500	RUSS2000	Nasdaq 100	Dow	Midcap 400	DJ RE	S&P Fin
п	2,516	2,516	2,516	2,516	2,516	2,516	2,516
Mean	0.000483	0.000504	0.000711	0.000465	0.000528	0.000365	0.000498
StDev	0.009953	0.013373	0.010964	0.009288	0.011610	0.015936	0.016699
Skewness	-0.315213	-0.135942	-0.245333	-0.298776	-0.283405	0.373483	0.446630
Minimum	-0.068958	-0.093317	-0.063053	-0.057061	-0.086123	-0.115888	-0.121282
Median	0.000362	0.000554	0.000773	0.000374	0.000606	0.000382	0.000273
Maximum	0.068366	0.080660	0.063621	0.066116	0.071101	0.152206	0.163312
CAGR	12.93%	13.54%	19.63%	12.42%	14.24%	9.64%	13.37%
Volalitily	15.80%	21.23%	17.41%	14.74%	18.43%	25.30%	26.51%
HPR	236.70%	255.43%	498.47%	221.85%	277.74%	150.62%	249.93%

Sector indexes had positive skewness.

Correlation estimates of daily index returns during period 20091231 through 20192131									
	S&P 500	RUSS2000	Nasdaq 100	Dow	Midcap 400	DJ RE	S&P Fin		
S&P 500	1								
RUSS2000	0.918	1							
Nasdaq 100	0.925	0.857	1						
Dow	0.975	0.871	0.877	1					
Midcap 400	0.950	0.969	0.877	0.906	1				
DJ RE	0.761	0.750	0.656	0.717	0.780	1			
S&P Fin	0.872	0.817	0.723	0.841	0.840	0.803	1		

For major indexes, strongest correlation is between S&P and Dow.

Correlation estimates of daily index returns during period 20091231 through 20192131								
	S&P 500	RUSS2000	Nasdaq 100	Dow	Midcap 400	DJ RE	S&P Fin	
S&P 500	1							
RUSS2000	0.918	1						
Nasdaq 100	0.925	0.857	1					
Dow	0.975	0.871	0.877	1				
Midcap 400	0.950	0.969	0.877	0.906	1			
DJ RE	0.761	0.750	0.656	0.717	0.780	1		
S&P Fin	0.872	0.817	0.723	0.841	0.840	0.803	1	

For major indexes, strongest correlation is between S&P and Dow.

- Implies Dow futures market will not compete for hedging purposes.

Correlation estimates of daily index returns during period 20091231 through 20192131									
	S&P 500	RUSS2000	Nasdaq 100	Dow	Midcap 400	DJ RE	S&P Fin		
S&P 500	1								
RUSS2000	0.918	1							
Nasdaq 100	0.925	0.857	1						
Dow	0.975	0.871	0.877	1					
Midcap 400	0.950	0.969	0.877	0.906	1				
DJ RE	0.761	0.750	0.656	0.717	0.780	1			
S&P Fin	0.872	0.817	0.723	0.841	0.840	0.803	1		

For major indexes, weakest correlation is between S&P and Russell 2000. - Implies Russell 2000 futures market can compete for hedging purposes.

			Open	
Product name	Index	Volume	interest	Turnover
E-mini S&P 500 Futures	US	1,466,350	2,762,774	53.1%
E-mini Russell 2000 Index Futures	US	116,286	490,965	23.7%
<u>S&P 500 Total Return Index Futures</u>	US	3,000	272,701	1.1%
<u>E-mini Nasdaq-100 Futures</u>	US	545,487	206,243	264.5%
<u>E-mini Dow (\$5) Futures</u>	US	238,563	104,903	227.4%
S&P 500 Annual Dividend Index Futures	US	3,786	92,798	4.1%
E-mini S&P MidCap 400 Futures	US	11,871	78,286	15.2%
Micro E-mini S&P 500 Index Futures	US	291,768	56,399	517.3%
<u>Nikkei/Yen Futures</u>	International	49,610	54,924	90.3%
Dow Jones Real Estate Futures	US	757	40,410	1.9%
<u>Micro E-mini Nasdaq-100 Index Futures</u>	US	256,361	38,119	672.5%
<u>S&P 500 Futures</u>	US	1,640	37,628	4.4%
E-mini Financial Select Sector Futures	Select Sector	1,267	31,965	4.0%

- □ Most active index futures in U.S. is E-mini S&P 500 contract.
 - Is 50 times index level.
 - Expires at open on third Friday of month.
 - Is cash-settled to special index level based on opening trade prices of each of S&P 500 stocks.
 - Weekly expirations have been launched but garner little trading volume.

Composition of stock indexes

- □ Value-weighted arithmetic indexes
 - S&P 500, Russell 2000, S&P 400, Nasdaq 100
- Price-weighted arithmetic index
 - Dow

Value-weighted index

- □ S&P 500 index:
 - Included 500 stocks for first time in 1957.
 - Initial divisor was computed using average share prices of index stocks during period 1941-3.
 - \square Base index level was set equal to 10.
 - □ Current index level is about 3326.50.
 - □ Price appreciation of about 33,165%.

Price-weighted index

- **DJIA 30:**
 - Began with 12 "blue-chip" stocks on May 26, 1896.
 - \Box Average price on that day was 40.94.
 - Increased to 20 stocks in 1916.
 - Increased to 30 stocks in 1928.

Stock index futures valuation

- □ Earlier, we developed two versions of cost of carry relation.
 - Income is constant continuous rate.
 - Income is discrete payments.
- □ Which one should be used for stock index futures?

S&P 500 dividends

- □ <u>Supporting file</u>: S&P 500 index dividends.xlsx
 - Downloaded daily data from Datastream for period 19871231 through 20191231.
 - □ Eliminated non-trading days.

Dividend patterns

Dividend patterns

Dividend patterns

Stock index futures valuation

- □ Need to handled dividends as discrete flows.
- □ Net cost of carry relation for stock index futures is

$$F = Se^{rT} - \sum_{i=1}^{n} D_i e^{r(T-t_i)}$$

- Trading costs for index arbitrageurs are about 1.50 index points.
 - Will execute an arbitrage if

$$F < Se^{rT} - \sum_{i=1}^{n} D_i e^{r(T-t_i)} - 1.50$$

 Buy futures, sell index portfolio, invest proceeds in Tbills.

- Trading costs for index arbitrageurs are about 1.50 index points.
 - Will execute an arbitrage if

$$F > Se^{rT} - \sum_{i=1}^{n} D_i e^{r(T-t_i)} - 1.50$$

Sell futures, borrow, and buy index portfolio.

- □ How efficient is index arbitrage?
 - On a minute-by-minute basis on 8/29/03, computed

Mispricing =
$$F - \left[Se^{rT} - \sum_{i=1}^{n} D_i e^{r(T-t_i)} \right]$$

- □ How efficient is index arbitrage?
 - Mis-pricing and arbitrage bounds on 8/29/03

- Buying or selling of index stocks must be simultaneous.
 - Requires use of computer-generated orders.
 - Referred to as *basket trading* or *program trading*.

Hedging with index futures

- Manage stock portfolio risk by buying and selling index futures contracts.
 - Assume objective is to minimize <u>risk</u> of hedged portfolio return (subject to given level of return) using available futures contracts.
- Elements of least-risk hedging:
 - Identify least-risk hedge ratio.
 - Show equivalence of hedge ratio to OLS regression slope coefficient.
 - Discuss estimation issues.
 - Generalize model to multiple sources of risk.

□ <u>Notation</u>:

 V_0 = initial value of portfolio to be hedged

$$\tilde{V}_T$$
 = uncertain portfolio value at time *T*

$$\tilde{R}_V = \ln\left(\frac{\tilde{V}_T}{V_0}\right) =$$
 return on portfolio to be hedged

$$F_0$$
 = initial futures price

$$\tilde{F}_T$$
 = uncertain futures price at time T

$$\tilde{R}_F = \ln\left(\frac{\tilde{F}_T}{F_0}\right) = \text{return on futures}$$

 n_F = number of futures contracts bought (+) or sold (-) \tilde{R}_H = return on hedged portfolios

- $\square \text{ Hedged portfolio return is} \\ \tilde{R}_H = \tilde{R}_V + n_F \tilde{R}_F$
- □ Risk of hedged portfolio return is

$$\sigma_H^2 = \sigma_V^2 + n_F^2 \sigma_F^2 + 2n_F \sigma_{V,F}$$

□ Least-risk hedge is determined by

$$\frac{d\sigma_H^2}{n_F} = 2n_F^*\sigma_F^2 + 2\sigma_{V,F} = 0$$

□ Least-risk hedge ratio is

$$n_F^* = -\frac{\sigma_{V,F}}{\sigma_F^2} = -\rho_{V,F} \left(\frac{\sigma_V}{\sigma_F}\right)$$

□ Least-risk hedge ratio if portfolio being hedged underlies futures (e.g., S&P 500)?

$$n_F^* = -\rho_{V,F}\left(\frac{\sigma_V}{\sigma_F}\right) = -1$$

- □ <u>Illustration</u>: Find least-risk hedge ratio for stock portfolio.
 - Supporting file: Stock portfolio hedge.xlsx
 - Contains daily values of stock portfolio and index stock futures prices.
 - □ Computes hedge ratio:
 - Analytically
 - Using regression
 - Using SOLVER

- □ <u>Step 1</u>: Identify appropriate futures contract(s).
 - Since no futures are written on stock portfolio, identify closest, liquid substitute.
 - Examine correlation between stock portfolio and available index futures. Generally want contract with highest correlation.
 - Depth and liquidity of index futures is also important.
 - Depth ensures small price impact.
 - Liquidity (i.e., small bid/ask spread) ensures fast and cost-efficient trading.

- □ <u>Step 2</u>: Collect historical time series.
 - Daily stock portfolio values
 - Index futures prices
 - □ Index futures price contract denomination is 50.

- □ <u>Step 3</u>: Estimate parameters of minimum risk hedge.
 - Compute:
 - □ standard deviation of stock portfolio returns
 - □ standard deviation of futures returns
 - □ correlation between stock portfolio and futures returns

Summary statistics for returns					
	Stock	Index			
	portfolio	futures			
	return	return			
n	294	294			
Mean	0.000405	0.000333			
StDev	0.005151	0.005706			
Skewness	0.009638	0.075221			
Correlation	0.989811				

□ <u>Step 4</u>: Compute least-risk hedge ratio.

$$n_F^* = -.989811 \left(\frac{.005151}{.005711}\right) = -.893543$$

- □ <u>Step 5</u>: Determine least-risk number of futures.
 - Hedge ratio is number of futures to sell per unit of stock portfolio.
 - Need to adjust by dollar value of portfolio and dollar value of stock index futures.

$$n_F^* = -.89354 \left(\frac{32,671,455}{1,152.50 \times 50} \right)$$
$$= -.89354 \left(\frac{32,671,455}{1,152.50 \times 50} \right)$$
$$= -506.61 \approx -507$$

- OLS regression provides alternative means for risk measurement.
- □ Consider regression of portfolio return on futures return.

$$\tilde{R}_{V} = \alpha_{0} + \alpha_{1}\tilde{R}_{F} + \tilde{\varepsilon}$$

□ Hedge portfolio return may be written

$$\begin{split} \tilde{R}_{H} &= \tilde{R}_{V} + n_{F}\tilde{R}_{F} \\ &= \alpha_{0} + \alpha_{1}\tilde{R}_{F} + \tilde{\varepsilon} + n_{F}\tilde{R}_{F} \\ &= \alpha_{0} + (\alpha_{1} + n_{F})\tilde{R}_{F} + \tilde{\varepsilon} \end{split}$$

□ Variance of hedged portfolio return is

$$Var\left(\tilde{R}_{H}\right) = Var\left[\alpha_{0} + \left(\alpha_{1} + n_{F}\right)\tilde{R}_{F} + \tilde{\varepsilon}\right]$$
$$= Var\left[\left(\alpha_{1} + n_{F}\right)\tilde{R}_{F}\right] + Var\left(\tilde{\varepsilon}\right) + 2Cov\left(\left(\alpha_{1} + n_{F}\right)\tilde{R}_{F}, \tilde{\varepsilon}\right)$$
$$= Var\left[\left(\alpha_{1} + n_{F}\right)\tilde{R}_{F}\right] + Var\left(\tilde{\varepsilon}\right)$$

□ Where is hedged portfolio risk minimized?

$$n_F^* = -\alpha_1$$

- Illustration: Find risk-minimizing hedge for portfolio of stocks.
 - Supporting file: Stock portfolio hedge.xlsx

Same risk-minimizing hedge ratio.

Regression Statistics						
Multiple R	0.9898					
R Square	0.9797					
Adjusted R Square	0.9797					
Standard Error	0.0007					
Observations	294					
	Coeff	StErr	t Stat			
Intercept	0.00011	0.00004	2.50			
Futures return	0.89354	0.00752	118.79			

- Illustration: Find risk-minimizing hedge for portfolio of stocks.
 - Supporting file: Stock portfolio hedge.xlsx

	Regression Statistics			
	Multiple R	0.9898		
	R Square	0.9797		
Adjusted R Squared is	Adjusted R Square	0.9797		
measure of <i>hedging</i>	Standard Error	0.0007	_	
effectiveness.	Observations	294		
Percent of portfolio return		Coeff	StErr	t Stat
variance explained by futures	Intercept	0.00011	0.00004	2.50
returns.	Futures return	0.89354	0.00752	118.79

- Return interval must be selected (e.g., daily, weekly, monthly, etc. returns)
 - higher frequency implies more information (good) but also more noise (bad)
 - prices for cash and futures must be simultaneous

- <u>Illustration</u>: Suppose we hold S&P 500 index portfolio and want to hedge market risk using S&P 500 futures.
 - Already know least-risk hedge ratio is −1.

- □ Suppose we use historical data to estimate hedge.
- □ S&P 500 futures data during 1997
 - 1997 had 254 trading days, which creates
 - □ 253 daily returns
 - \Box 52 weekly returns
 - □ 26 biweekly returns
 - For weekly and biweekly returns, Wednesday closing prices are used.

- □ Use returns of <u>nearby</u> futures contract.
 - When switching contract months, care must be taken to splice price change series correctly.
- □ <u>Supporting file</u>: S&P 500 hedge.xlsx

 Daily, weekly, and bi-weekly regressions using S&P 500 futures data during 1997.

Hedge regressions using different return intervals						
					Adjusted	
	$lpha_{0}$	$t(\alpha_0)$	α_1	$t(\alpha_1)$	R-squared	
Daily	0.0003	1.65	0.8764	70.07	0.9514	
Weekly	0.0009	2.29	0.9558	55.64	0.9841	
Bi-weekly	0.0016	2.61	0.9884	43.40	0.9874	

 Daily, weekly, and bi-weekly regressions using S&P 500 futures data during 1997.

Hedge regressions using different return intervals							
					Adjusted		
	$lpha_{0}$	$t(\alpha_0)$	α_1	$t(\alpha_1)$	R-squared		
Daily	0.0003	1.65	0.8764	70.07	0.9514		
Weekly	0.0009	2.29	0.9558	55.64	0.9841		
Bi-weekly	0.0016	2.61	(0.9884)	43.40	0.9874		

Measurement error can be large. Correct answer is 1.

- <u>CAVEAT</u>: Parameters are estimated using past data, but we are interested in future.
 - Must have reason to believe relation is stationary.

OLS approach can be generalized to handle multiple sources of risk.

$$\tilde{R}_{V} = \alpha_{0} + \alpha_{1}\tilde{R}_{F,1} + \alpha_{2}\tilde{R}_{F,2} + \ldots + \alpha_{n}\tilde{R}_{F,n} + \tilde{\varepsilon}$$

□ Set hedge ratios for all or just selected risks.

□ <u>Illustration</u>: Hedge oil price risk of fund that invests primarily in oil stocks.

- <u>Step 1</u>: Identify portfolio risk exposures and find futures to proxy for each.
 - SP: S&P 500 futures (stock market risk)
 - CL: crude oil futures (petroleum price risk)
 - HO: heating oil futures (processed petroleum price risk)
 - HU: unleaded gas futures (processed petroleum price risk)

- □ <u>Step 2</u>: Collect historical return data.
 - Supporting file: Oil hedge.xlsx

	Portfolio									
	value	Portfolio		Futures p	orices			Futures	returns	
Day	(\$ millions)	return	SP	CL	HO	HU	SP	CL	HO	HU
1	769.26		1100.00	40.00	0.6900	0.7500				
2	776.57	0.00946	1099.00	40.39	0.6969	0.7616	-0.00091	0.00970	0.00995	0.01535
3	782.45	0.00754	1100.55	40.50	0.7051	0.7709	0.00141	0.00272	0.01170	0.01214
4	791.62	0.01165	1101.10	41.17	0.7236	0.7878	0.00050	0.01641	0.02590	0.02169
5	791.44	-0.00023	1100.90	41.25	0.7213	0.7865	-0.00018	0.00194	-0.00318	-0.00165
6	789.32	-0.00268	1104.30	41.15	0.7265	0.7882	0.00308	-0.00243	0.00718	0.00216
7	793.38	0.00513	1109.05	40.50	0.7124	0.7670	0.00429	-0.01592	-0.01960	-0.02727
8	789.23	-0.00524	1108.40	40.68	0.7290	0.7764	-0.00059	0.00443	0.02303	0.01218
9	786.04	-0.00405	1107.25	40.16	0.7255	0.7673	-0.00104	-0.01287	-0.00481	-0.01179
10	784.78	-0.00160	1106.65	40.34	0.7339	0.7690	-0.00054	0.00447	0.01151	0.00221

\square <u>Step 3</u>: Get to know properties of data.

SP volatility low during sample period.

Summary statistics								
		Futures 1	returns					
	SP	SP CL HO HU						
n	252	252	252	252				
Mean	-0.000029	0.000483	0.000773	0.000609				
StDev	0.002798	0.006899	0.011017	0.011879				
Skewness	-0.473383	-0.162212	-0.207878	-0.265877				
CAGR	-0.73%	12.95%	21.49%	16.60%				
Volatility	4.44%	10.95%	17.49%	18.86%				

Correlations							
	SP	CL	НО	HU			
SP	1						
CL	-0.191	1					
НО	-0.135	0.773	1				
HU	-0.079	0.718	0.662	1			

\square <u>Step 3</u>: Get to know properties of data.

SP volatility low during sample period.

CL and processed products are more normal.

Summary statistics								
		Futures returns						
	SP	SP CL HO HU						
n	252	252	252	252				
Mean	-0.000029	0.000483	0.000773	0.000609				
StDev	0.002798	0.006899	0.011017	0.011879				
Skewness	-0.473383	-0.162212	-0.207878	-0.265877				
CAGR	0.73%_	12.95%	21.49%	16.60%				
Volatility	(4.44%)	10.95%	17.49%	18.86%				

Correlations							
	SP	CL	НО	HU			
SP	1						
CL	-0.191	1					
НО	-0.135	0.773	1				
HU	-0.079	0.718	0.662	1			

\square <u>Step 3</u>: Get to know properties of data.

SP volatility low during sample period.

CL and processed products are more normal.

CL less volatility than HO or HU.

	Sumn	hary statistic	Ś				
		Futures returns					
	SP	CL	HO	HU			
n	252	252	252	252			
Mean	-0.000029	0.000483	0.000773	0.000609			
StDev	0.002798	0.006899	0.011017	0.011879			
Skewness	-0.473383	-0.162212	-0.207878	-0.265877			
CAGR	-0.73%	12.95%	21.49%	16.60%			
Volatility	4.44%	10.95%	17.49%	18.86%			

Correlations								
	SP	CL	НО	HU				
SP	1							
CL	-0.191	1						
НО	-0.135	0.773	1					
HU	-0.079	0.718	0.662	1				

\square <u>Step 3</u>: Get to know properties of data.

What does this say about oil oil stock exposure?

Summary statistics						
		Futures returns				
	SP	CL	HO	HU		
n	252	252	252	252		
Mean	-0.000029	0.000483	0.000773	0.000609		
StDev	0.002798	0.006899	0.011017	0.011879		
Skewness	-0.473383	-0.162212	-0.207878	-0.265877		
CAGR	-0.73%	12.95%	21.49%	16.60%		
Volatility	4.44%	10.95%	17.49%	18.86%		

Correlations					
	SP	CL	НО	HU	
SP	(1				
CL	-0.191	1			
НО	-0.135	0.773	1		
HU	-0.079	0.718	0.662	1	

\Box <u>Step 3</u>: Get to know properties of data.

	Summary statistics				
		Futures returns			
		SP	CL	HO	HU
	n	252	252	252	252
What does this say about oil	Mean	-0.000029	0.000483	0.000773	0.000609
oil stock exposure?	StDev	0.002798	0.006899	0.011017	0.011879
on stock exposure?	Skewness	-0.473383	-0.162212	-0.207878	-0.265877
Are stocks:	CAGR	-0.73%	12.95%	21.49%	16.60%
1) Oil exploration	Volatility	4.44%	10.95%	17.49%	18.86%
2) Oil refining, or					
2) Oil production distribution					
5) On production distribution		SP	CL	НО	HU
	SP	1			
	CL	-0.191	1		
	НО	-0.135	0.773	1	
	HU	-0.079	0.718	0.662	1

□ <u>Step 4</u>: Run OLS regression.

$$\tilde{R}_{V} = \alpha_{0} + \alpha_{1}\tilde{R}_{F,1} + \alpha_{2}\tilde{R}_{F,2} + \dots + \alpha_{n}\tilde{R}_{F,n} + \tilde{\varepsilon}$$

Regression Statistics				
Multiple R	0.5826			
R Square	0.3394			
Adjusted R Square	0.3287			
Standard Error	0.0060			
Observations	252			

	Coeff	StErr	t Stat
Intercept	0.00002	0.00038	0.05
SP	1.55502	0.13904	11.18
CL	0.21055	0.09773	2.15
НО	-0.03085	0.05610	-0.55
HU	-0.00062	0.04764	-0.01

□ <u>Step 4</u>: Run OLS regression.

$$\tilde{R}_{V} = \alpha_{0} + \alpha_{1}\tilde{R}_{F,1} + \alpha_{2}\tilde{R}_{F,2} + \dots + \alpha_{n}\tilde{R}_{F,n} + \tilde{\varepsilon}$$

Hedge is not (will not be) particularly effective.

Regression Statistics				
Multiple R	0.5826			
R Square	0.3394			
Adjusted R Square	0.3287			
Standard Error	0.0060			
Observations	252			

	Coeff	StErr	t Stat
Intercept	0.00002	0.00038	0.05
SP	1.55502	0.13904	11.18
CL	0.21055	0.09773	2.15
НО	-0.03085	0.05610	-0.55
HU	-0.00062	0.04764	-0.01

□ <u>Step 4</u>: Run OLS regression.

$$\tilde{R}_{V} = \alpha_{0} + \alpha_{1}\tilde{R}_{F,1} + \alpha_{2}\tilde{R}_{F,2} + \dots + \alpha_{n}\tilde{R}_{F,n} + \tilde{\varepsilon}$$

HO and HU returns have little effect on portfolio return.

Regression Statistics				
Multiple R	0.5826			
R Square	0.3394			
Adjusted R Square	0.3287			
Standard Error	0.0060			
Observations	252			

	Coeff	StErr	t Stat
Intercept	0.00002	0.00038	0.05
SP	1.55502	0.13904	11.18
CL	0.21055	0.09773	2.15
НО	-0.03085	0.05610	(-0.55)
HU	-0.00062	0.04764	-0.01

□ <u>Step 4</u>: Run OLS regression.

$$\tilde{R}_{V} = \alpha_{0} + \alpha_{1}\tilde{R}_{F,1} + \alpha_{2}\tilde{R}_{F,2} + \dots + \alpha_{n}\tilde{R}_{F,n} + \tilde{\varepsilon}$$

HO and HU returns have little effect on portfolio return.

Drop HO and HU and re-run regression.

Regression Statistics					
Multiple R	0.5826				
R Square	0.3394				
Adjusted R Square	0.3287				
Standard Error	0.0060				
Observations	252				
	Coeff	StErr	t Stat		
Intercept	0.00002	0.00038	0.05		
SP	1.55502	0.13904	11.18		
CL	0.21055	0.09773	2.15		
НО	-0.03085	0.05610	(-0.55)		
HU	-0.00062	0.04764	-0.01		

□ <u>Step 5</u>: Drop heating oil and crude oil and re-run regression.

Adjusted R-squared is increased.

Regression Statistics					
Multiple R	0.5818				
R Square	0.3385	_			
Adjusted R Square	e 0.3332				
Standard Error	0.0060				
Observations	252				
	Coeff	StErr	t Stat		
Intercept	0.00001	0.00038	0.04		
SP	1.55328	0.13808	11.25		
CL	0.17158	0.05600	3.06		

□ <u>Step 5</u>: Drop heating oil and crude oil and re-run regression.

Adjusted R-squared is increased.

Both SP and CL returns explain portfolio returns.

Regression Statistics					
Multiple R	0.5818				
R Square	0.3385				
Adjusted R Square	0.3332				
Standard Error	0.0060				
Observations	252				
	Coeff	StErr	t Stat		
Intercept	0.00001	0.00038	0.04		
SP	1.55328	0.13808	(11.25)		
CL	0.17158	0.05600	(3.06)		
Hedging multiple risks

□ <u>Step 6</u>: Find number of crude oil futures to sell.

$$n_F^* = -.17158 \left(\frac{779,520,000}{45.18 \times 1,000} \right) = -2,960.36 \approx -2,960$$

Estimation issues

Missing variable bias: Regress on crude oil futures return only.

Regression Statistics					
Multiple R	0.0482				
R Square	0.0023				
Adjusted R Square	-0.0017				
Standard Error	0.0074				
Observations	252				
	Coeff	StErr	t Stat		
Intercept	0.00003	0.00047	0.06		
CL	0.05136	0.06738	0.76		

Estimation issues

□ <u>Missing variable bias</u>: Recall return correlations.

Correlations						
	SP	CL	НО	HU		
SP	1					
CL	-0.191	1				
НО	0.135	0.773	1			
HU	-0.079	0.718	0.662	1		

Absence of SP means that CL, to some degree, also picks up effect of CL because SP and CL are correlated.

Negative correlation implies downward bias.

- Stock index futures were introduced in U.S. in 1982; stock index options in 1983.
- □ Construction of stock indexes
 - value-weighted indexes
 - price-weighted indexes
- □ Cash dividends
 - use discrete cash flows in valuation

- □ Index arbitrage
 - Program trading
- OLS regression of portfolio returns on futures returns provides estimate of minimum-risk hedge ratio.
- □ *Multiple regression* can be used to estimate hedge ratios for portfolios with multiple sources of risk.

- □ Steps in setting multiple risk portfolio hedge:
 - Identify portfolio risk exposures and find futures to proxy for each.
 - Collect historical return series.
 - Estimate OLS regression.
 - □ Use coefficient estimates to hedge selected exposures.

- □ Careful data analysis is necessary to properly estimate hedge ratios. Examined effects of:
 - Data frequency
 - Missing variables bias
 - Failing to include relevant explanatory variable is much more serious than including irrelevant explanatory variable.